TY - JOUR
T1 - Diels-Alder Reaction of Photochemically Generated (E)-Cyclohept-2-enones
T2 - Diene Scope, Reaction Pathway, and Synthetic Application
AU - Schwinger, Daniel P.
AU - Peschel, Martin T.
AU - Jaschke, Constantin
AU - Jandl, Christian
AU - De Vivie-Riedle, Regina
AU - Bach, Thorsten
N1 - Publisher Copyright:
© The Authors. Published by 2022 American Chemical Society.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Upon irradiation at λ = 350 nm, cyclohept-2-enone undergoes an isomerization to the strained (E)-isomer. The process was studied by XMS-CASPT2 calculations and found to proceed by two competitive reaction channels on either the singlet or the triplet hypersurface. (E)-Cyclohept-2-enone is a reactive dienophile in thermal [4 + 2] cycloaddition reactions with various dienes. Ten different dienes were probed, most of which─except for 1,3-cyclohexadiene─underwent a clean Diels-Alder reaction and gave the respective trans-fused six-membered rings in good yields (68-98%). The reactions with furan were studied in detail, both experimentally and by DLPNO-CCSD(T) calculations. Two diastereoisomers were formed in a ratio of 63/35 with the exo-product prevailing, and the configuration of both diastereoisomers was corroborated by single crystal X-ray crystallography. The outcome of the photoinduced Diels-Alder reaction matched both qualitatively and quantitatively the calculated reaction pathway. Apart from cyclohept-2-enone, five additional cyclic hept-2-enones and cyclooct-2-enone were employed in their (E)-form as dienophiles in the Diels-Alder reaction with 1,3-cyclopentadiene (80-98% yield). The method was eventually applied to a concise total synthesis of racemic trans-α-himachalene (four steps, 14% overall yield).
AB - Upon irradiation at λ = 350 nm, cyclohept-2-enone undergoes an isomerization to the strained (E)-isomer. The process was studied by XMS-CASPT2 calculations and found to proceed by two competitive reaction channels on either the singlet or the triplet hypersurface. (E)-Cyclohept-2-enone is a reactive dienophile in thermal [4 + 2] cycloaddition reactions with various dienes. Ten different dienes were probed, most of which─except for 1,3-cyclohexadiene─underwent a clean Diels-Alder reaction and gave the respective trans-fused six-membered rings in good yields (68-98%). The reactions with furan were studied in detail, both experimentally and by DLPNO-CCSD(T) calculations. Two diastereoisomers were formed in a ratio of 63/35 with the exo-product prevailing, and the configuration of both diastereoisomers was corroborated by single crystal X-ray crystallography. The outcome of the photoinduced Diels-Alder reaction matched both qualitatively and quantitatively the calculated reaction pathway. Apart from cyclohept-2-enone, five additional cyclic hept-2-enones and cyclooct-2-enone were employed in their (E)-form as dienophiles in the Diels-Alder reaction with 1,3-cyclopentadiene (80-98% yield). The method was eventually applied to a concise total synthesis of racemic trans-α-himachalene (four steps, 14% overall yield).
UR - http://www.scopus.com/inward/record.url?scp=85127621900&partnerID=8YFLogxK
U2 - 10.1021/acs.joc.2c00186
DO - 10.1021/acs.joc.2c00186
M3 - Article
AN - SCOPUS:85127621900
SN - 0022-3263
VL - 87
SP - 4838
EP - 4851
JO - Journal of Organic Chemistry
JF - Journal of Organic Chemistry
IS - 7
ER -