Abstract
Purpose: To explore the potential of grating-based x-ray phase-contrast imaging for clinical applications, a first compact gantry system was developed. It is designed such that it can be implemented into an in-vivo small-animal phase-contrast computed tomography (PC-CT) scanner. The purpose of the present study is to assess the accuracy and quantitativeness of the described gantry in both absorption and phase-contrast. Methods: A phantom, containing six chemically well-defined liquids, was constructed. A tomography scan with cone-beam reconstruction of this phantom was performed yielding the spatial distribution of the linear attenuation coefficient and decrement of the complex refractive index. Theoretical values of and were calculated for each liquid from tabulated data and compared with the experimentally measured values. Additionally, a color-fused image representation is proposed to display the complementary absorption and phase-contrast information in a single image. Results: Experimental and calculated data of the phantom agree well confirming the quantitativeness and accuracy of the reconstructed spatial distributions of μ and δ. The proposed color-fused image representation, which combines the complementary absorption and phase information, considerably helps in distinguishing the individual substances. Conclusions: The concept of grating-based phase-contrast computed tomography (CT) can be implemented into a compact, cone-beam geometry gantry setup. The authors believe that this work represents an important milestone in translating phase-contrast x-ray imaging from previous proof-of-principle experiments to first preclinical biomedical imaging applications on small-animal models.
Original language | English |
---|---|
Pages (from-to) | 5910-5915 |
Number of pages | 6 |
Journal | Medical Physics |
Volume | 38 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2011 |
Keywords
- computed tomography
- micro-computed tomography
- phase contrast
- x-ray imaging