Abstract
We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.
Original language | English |
---|---|
Article number | 116 |
Journal | European Physical Journal C |
Volume | 75 |
Issue number | 3 |
DOIs | |
State | Published - 2015 |
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube: IceCube Collaboration'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: European Physical Journal C, Vol. 75, No. 3, 116, 2015.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube
T2 - IceCube Collaboration
AU - Aartsen, M. G.
AU - Ackermann, M.
AU - Adams, J.
AU - Aguilar, J. A.
AU - Ahlers, M.
AU - Ahrens, M.
AU - Altmann, D.
AU - Anderson, T.
AU - Arguelles, C.
AU - Arlen, T. C.
AU - Auffenberg, J.
AU - Bai, X.
AU - Barwick, S. W.
AU - Baum, V.
AU - Beatty, J. J.
AU - Tjus, J. Becker
AU - Becker, K. H.
AU - BenZvi, S.
AU - Berghaus, P.
AU - Berley, D.
AU - Bernardini, E.
AU - Bernhard, A.
AU - Besson, D. Z.
AU - Binder, G.
AU - Bindig, D.
AU - Bissok, M.
AU - Blaufuss, E.
AU - Blumenthal, J.
AU - Boersma, D. J.
AU - Bohm, C.
AU - Bos, F.
AU - Bose, D.
AU - Böser, S.
AU - Botner, O.
AU - Brayeur, L.
AU - Bretz, H. P.
AU - Brown, A. M.
AU - Casey, J.
AU - Casier, M.
AU - Cheung, E.
AU - Chirkin, D.
AU - Christov, A.
AU - Christy, B.
AU - Clark, K.
AU - Classen, L.
AU - Clevermann, F.
AU - Coenders, S.
AU - Cowen, D. F.
AU - Cruz Silva, A. H.
AU - Danninger, M.
AU - Daughhetee, J.
AU - Davis, J. C.
AU - Day, M.
AU - de André, J. P.A.M.
AU - De Clercq, C.
AU - De Ridder, S.
AU - Desiati, P.
AU - de Vries, K. D.
AU - de With, M.
AU - DeYoung, T.
AU - Díaz-Vélez, J. C.
AU - Dunkman, M.
AU - Eagan, R.
AU - Eberhardt, B.
AU - Eichmann, B.
AU - Eisch, J.
AU - Euler, S.
AU - Evenson, P. A.
AU - Fadiran, O.
AU - Fazely, A. R.
AU - Fedynitch, A.
AU - Feintzeig, J.
AU - Felde, J.
AU - Feusels, T.
AU - Filimonov, K.
AU - Finley, C.
AU - Fischer-Wasels, T.
AU - Flis, S.
AU - Franckowiak, A.
AU - Frantzen, K.
AU - Fuchs, T.
AU - Gaisser, T. K.
AU - Gaior, R.
AU - Gallagher, J.
AU - Gerhardt, L.
AU - Gier, D.
AU - Gladstone, L.
AU - Glüsenkamp, T.
AU - Goldschmidt, A.
AU - Golup, G.
AU - Gonzalez, J. G.
AU - Goodman, J. A.
AU - Góra, D.
AU - Grant, D.
AU - Gretskov, P.
AU - Groh, J. C.
AU - Groß, A.
AU - Ha, C.
AU - Haack, C.
AU - Haj Ismail, A.
AU - Hallen, P.
AU - Hallgren, A.
AU - Halzen, F.
AU - Hanson, K.
AU - Hebecker, D.
AU - Heereman, D.
AU - Heinen, D.
AU - Helbing, K.
AU - Hellauer, R.
AU - Hellwig, D.
AU - Hickford, S.
AU - Hill, G. C.
AU - Hoffman, K. D.
AU - Hoffmann, R.
AU - Homeier, A.
AU - Hoshina, K.
AU - Huang, F.
AU - Huelsnitz, W.
AU - Hulth, P. O.
AU - Hultqvist, K.
AU - Hussain, S.
AU - Ishihara, A.
AU - Jacobi, E.
AU - Jacobsen, J.
AU - Jagielski, K.
AU - Japaridze, G. S.
AU - Jero, K.
AU - Jlelati, O.
AU - Jurkovic, M.
AU - Kaminsky, B.
AU - Kappes, A.
AU - Karg, T.
AU - Karle, A.
AU - Kauer, M.
AU - Keivani, A.
AU - Kelley, J. L.
AU - Kheirandish, A.
AU - Kiryluk, J.
AU - Kläs, J.
AU - Klein, S. R.
AU - Köhne, J. H.
AU - Kohnen, G.
AU - Kolanoski, H.
AU - Koob, A.
AU - Köpke, L.
AU - Kopper, C.
AU - Kopper, S.
AU - Koskinen, D. J.
AU - Kowalski, M.
AU - Kriesten, A.
AU - Krings, K.
AU - Kroll, G.
AU - Kroll, M.
AU - Kunnen, J.
AU - Kurahashi, N.
AU - Kuwabara, T.
AU - Labare, M.
AU - Larsen, D. T.
AU - Larson, M. J.
AU - Lesiak-Bzdak, M.
AU - Leuermann, M.
AU - Leute, J.
AU - Lünemann, J.
AU - Madsen, J.
AU - Maggi, G.
AU - Maruyama, R.
AU - Mase, K.
AU - Matis, H. S.
AU - Maunu, R.
AU - McNally, F.
AU - Meagher, K.
AU - Medici, M.
AU - Meli, A.
AU - Meures, T.
AU - Miarecki, S.
AU - Middell, E.
AU - Middlemas, E.
AU - Milke, N.
AU - Miller, J.
AU - Mohrmann, L.
AU - Montaruli, T.
AU - Morse, R.
AU - Nahnhauer, R.
AU - Naumann, U.
AU - Niederhausen, H.
AU - Nowicki, S. C.
AU - Nygren, D. R.
AU - Obertacke, A.
AU - Odrowski, S.
AU - Olivas, A.
AU - Omairat, A.
AU - O’Murchadha, A.
AU - Palczewski, T.
AU - Paul, L.
AU - Penek,
AU - Pepper, J. A.
AU - Pérez de los Heros, C.
AU - Pfendner, C.
AU - Pieloth, D.
AU - Pinat, E.
AU - Posselt, J.
AU - Price, P. B.
AU - Przybylski, G. T.
AU - Pütz, J.
AU - Quinnan, M.
AU - Rädel, L.
AU - Rameez, M.
AU - Rawlins, K.
AU - Redl, P.
AU - Rees, I.
AU - Reimann, R.
AU - Relich, M.
AU - Resconi, E.
AU - Rhode, W.
AU - Richman, M.
AU - Riedel, B.
AU - Robertson, S.
AU - Rodrigues, J. P.
AU - Rongen, M.
AU - Rott, C.
AU - Ruhe, T.
AU - Ruzybayev, B.
AU - Ryckbosch, D.
AU - Saba, S. M.
AU - Sander, H. G.
AU - Sandroos, J.
AU - Santander, M.
AU - Sarkar, S.
AU - Schatto, K.
AU - Scheriau, F.
AU - Schmidt, T.
AU - Schmitz, M.
AU - Schoenen, S.
AU - Schöneberg, S.
AU - Schönwald, A.
AU - Schukraft, A.
AU - Schulte, L.
AU - Schulz, O.
AU - Seckel, D.
AU - Sestayo, Y.
AU - Seunarine, S.
AU - Shanidze, R.
AU - Smith, M. W.E.
AU - Soldin, D.
AU - Spiczak, G. M.
AU - Spiering, C.
AU - Stamatikos, M.
AU - Stanev, T.
AU - Stanisha, N. A.
AU - Stasik, A.
AU - Stezelberger, T.
AU - Stokstad, R. G.
AU - Stößl, A.
AU - Strahler, E. A.
AU - Ström, R.
AU - Strotjohann, N. L.
AU - Sullivan, G. W.
AU - Taavola, H.
AU - Taboada, I.
AU - Tamburro, A.
AU - Tepe, A.
AU - Ter-Antonyan, S.
AU - Terliuk, A.
AU - Tešić, G.
AU - Tilav, S.
AU - Toale, P. A.
AU - Tobin, M. N.
AU - Tosi, D.
AU - Tselengidou, M.
AU - Unger, E.
AU - Usner, M.
AU - Vallecorsa, S.
AU - van Eijndhoven, N.
AU - Vandenbroucke, J.
AU - van Santen, J.
AU - Vehring, M.
AU - Voge, M.
AU - Vraeghe, M.
AU - Walck, C.
AU - Wallraff, M.
AU - Weaver, Ch
AU - Wellons, M.
AU - Wendt, C.
AU - Westerhoff, S.
AU - Whelan, B. J.
AU - Whitehorn, N.
AU - Wichary, C.
AU - Wiebe, K.
AU - Wiebusch, C. H.
AU - Williams, D. R.
AU - Wissing, H.
AU - Wolf, M.
AU - Wood, T. R.
AU - Woschnagg, K.
AU - Xu, D. L.
AU - Xu, X. W.
AU - Yanez, J. P.
AU - Yodh, G.
AU - Yoshida, S.
AU - Zarzhitsky, P.
AU - Ziemann, J.
AU - Zierke, S.
AU - Zoll, M.
AU - Morik, K.
N1 - Publisher Copyright: © 2015, The Author(s).
PY - 2015
Y1 - 2015
N2 - We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.
AB - We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.
UR - http://www.scopus.com/inward/record.url?scp=84924975571&partnerID=8YFLogxK
U2 - 10.1140/epjc/s10052-015-3330-z
DO - 10.1140/epjc/s10052-015-3330-z
M3 - Article
AN - SCOPUS:84924975571
SN - 1434-6044
VL - 75
JO - European Physical Journal C
JF - European Physical Journal C
IS - 3
M1 - 116
ER -