Development of a capillary electrophoretic method for the analysis of low-molecular-weight amines from metal working fluid aerosols and ambient air

Agnes Fekete, Moritz Frommberger, Guichen Ping, Majlinda R. Lahaniatis, Jutta Lintelman, Jeno Fekete, Istvan Gebefugi, Ashok Kumar Malik, Antonius Kettrup, Philippe Schmitt-Kopplin

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

A method for the determination of low-molecular-weight amines from indoor and ambient air was developed using a concentration device followed by CE coupled with indirect spectrophotometric and mass spectrometric detection that enables a reliable, rapid-response and easy-to-operate method. In indirect detection method, the selected amines were separated from interfering metal ions and amino alcohols present in the samples with an imidazole-based buffer with ethanol and EDTA as modifier. By replacing imidazole with ammonium, the final buffer was applicable for MS detection for the analytes with m/z higher than 50. A novel monolithic polymer material based on poly(methacrylate-acrylate) copolymer was developed for sampling short-chain amines from the gaseous phase. The selected analysis conditions were applied to quantify the selected short-chain amines with detection limits for the whole procedure determined between 1 and 2 μg/filter when 40 L air was sampled with 1 L/min velocity. Improved linearity and precision were obtained when the raw, time-scaled electropherogram data were transformed into mobility-scale applied for the determination of the performance characteristics of the methods. The applicability of the process of data transformation into the mobility scale was demonstrated by studying the matrix effect of water-miscible metal working fluid (stable water-oil emulsion) and of ambient air as real samples. CE-indirect UV and CE-MS, combined with the possibility of rapid air sampling, can be useful for the estimation of short-term exposure of the selected biogenic amines.

Original languageEnglish
Pages (from-to)1237-1247
Number of pages11
JournalELECTROPHORESIS
Volume27
Issue number5-6
DOIs
StatePublished - Mar 2006
Externally publishedYes

Keywords

  • Amines
  • Capillary electrophoresis
  • Indirect-UV detection
  • Mass spectrometry
  • Mobility scale

Fingerprint

Dive into the research topics of 'Development of a capillary electrophoretic method for the analysis of low-molecular-weight amines from metal working fluid aerosols and ambient air'. Together they form a unique fingerprint.

Cite this