TY - JOUR
T1 - Developing argumentation skills in mathematics through computer-supported collaborative learning
T2 - the role of transactivity
AU - Vogel, Freydis
AU - Kollar, Ingo
AU - Ufer, Stefan
AU - Reichersdorfer, Elisabeth
AU - Reiss, Kristina
AU - Fischer, Frank
N1 - Publisher Copyright:
© 2016, Springer Science+Business Media Dordrecht.
PY - 2016/10/1
Y1 - 2016/10/1
N2 - Collaboration scripts and heuristic worked examples are effective means to scaffold university freshmen’s mathematical argumentation skills. Yet, which collaborative learning processes are responsible for these effects has remained unclear. Learners presumably will gain the most out of collaboration if the collaborators refer to each other’s contributions in a dialectic way (dialectic transactivity). Learners also may refer to each other’s contributions in a dialogic way (dialogic transactivity). Alternatively, learners may not refer to each other’s contributions at all, but still construct knowledge (constructive activities). This article investigates the extent to which constructive activities, dialogic transactivity, and dialectic transactivity generated by either the learner or the learning partner can explain the positive effects of collaboration scripts and heuristic worked examples on the learners’ disposition to use argumentation skills. We conducted a 2 × 2 experiment with the factors collaboration script and heuristic worked examples with N = 101 math teacher students. Results showed that the learners’ engagement in self-generated dialectic transactivity (i.e., responding to the learning partner’s contribution in an argumentative way by critiquing and/or integrating their learning partner’s contributions) mediated the effects of both scaffolds on their disposition to use argumentation skills, whereas partner-generated dialectic transactivity or any other measured collaborative learning activity did not. To support the disposition to use argumentation skills in mathematics, learning environments should thus be designed in a way to help learners display dialectic transactivity. Future research should investigate how learners might better benefit from the dialectic transactivity generated by their learning partners.
AB - Collaboration scripts and heuristic worked examples are effective means to scaffold university freshmen’s mathematical argumentation skills. Yet, which collaborative learning processes are responsible for these effects has remained unclear. Learners presumably will gain the most out of collaboration if the collaborators refer to each other’s contributions in a dialectic way (dialectic transactivity). Learners also may refer to each other’s contributions in a dialogic way (dialogic transactivity). Alternatively, learners may not refer to each other’s contributions at all, but still construct knowledge (constructive activities). This article investigates the extent to which constructive activities, dialogic transactivity, and dialectic transactivity generated by either the learner or the learning partner can explain the positive effects of collaboration scripts and heuristic worked examples on the learners’ disposition to use argumentation skills. We conducted a 2 × 2 experiment with the factors collaboration script and heuristic worked examples with N = 101 math teacher students. Results showed that the learners’ engagement in self-generated dialectic transactivity (i.e., responding to the learning partner’s contribution in an argumentative way by critiquing and/or integrating their learning partner’s contributions) mediated the effects of both scaffolds on their disposition to use argumentation skills, whereas partner-generated dialectic transactivity or any other measured collaborative learning activity did not. To support the disposition to use argumentation skills in mathematics, learning environments should thus be designed in a way to help learners display dialectic transactivity. Future research should investigate how learners might better benefit from the dialectic transactivity generated by their learning partners.
KW - Argumentation
KW - Collaboration scripts
KW - Heuristic worked examples
KW - Mathematics
KW - Transactivity
UR - http://www.scopus.com/inward/record.url?scp=84977177585&partnerID=8YFLogxK
U2 - 10.1007/s11251-016-9380-2
DO - 10.1007/s11251-016-9380-2
M3 - Article
AN - SCOPUS:84977177585
SN - 0020-4277
VL - 44
SP - 477
EP - 500
JO - Instructional Science
JF - Instructional Science
IS - 5
ER -