TY - JOUR
T1 - Deterministic Identification for Molecular Communications Over the Poisson Channel
AU - Salariseddigh, Mohammad Javad
AU - Jamali, Vahid
AU - Pereg, Uzi
AU - Boche, Holger
AU - Deppe, Christian
AU - Schober, Robert
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2023/12/1
Y1 - 2023/12/1
N2 - Various applications of molecular communications (MC) are event-triggered, and, as a consequence, the prevalent Shannon capacity may not be the right measure for performance assessment. Thus, in this paper, we motivate and establish the identification capacity as an alternative metric. In particular, we study deterministic identification (DI) for the discrete-time Poisson channel (DTPC), subject to an average and a peak molecule release rate constraint, which serves as a model for MC systems employing molecule counting receivers. It is established that the number of different messages that can be reliably identified for this channel scales as 2 (n n)R , where n and R are the codeword length and coding rate, respectively. Lower and upper bounds on the DI capacity of the DTPC are developed. The obtained large capacity of the DI channel sheds light on the performance of natural DI systems such as natural olfaction, which are known for their extremely large chemical discriminatory power in biology. Furthermore, numerical results for the empirical miss-identification and false identification error rates are provided for finite length codes. This allows us to characterize the behaviour of the error rate for increasing codeword lengths, which complements our theoretically-derived scale for asymptotically large codeword lengths.
AB - Various applications of molecular communications (MC) are event-triggered, and, as a consequence, the prevalent Shannon capacity may not be the right measure for performance assessment. Thus, in this paper, we motivate and establish the identification capacity as an alternative metric. In particular, we study deterministic identification (DI) for the discrete-time Poisson channel (DTPC), subject to an average and a peak molecule release rate constraint, which serves as a model for MC systems employing molecule counting receivers. It is established that the number of different messages that can be reliably identified for this channel scales as 2 (n n)R , where n and R are the codeword length and coding rate, respectively. Lower and upper bounds on the DI capacity of the DTPC are developed. The obtained large capacity of the DI channel sheds light on the performance of natural DI systems such as natural olfaction, which are known for their extremely large chemical discriminatory power in biology. Furthermore, numerical results for the empirical miss-identification and false identification error rates are provided for finite length codes. This allows us to characterize the behaviour of the error rate for increasing codeword lengths, which complements our theoretically-derived scale for asymptotically large codeword lengths.
KW - Channel capacity
KW - Poisson channel
KW - deterministic identification
KW - molecular communication
UR - http://www.scopus.com/inward/record.url?scp=85174837801&partnerID=8YFLogxK
U2 - 10.1109/TMBMC.2023.3324487
DO - 10.1109/TMBMC.2023.3324487
M3 - Article
AN - SCOPUS:85174837801
SN - 2332-7804
VL - 9
SP - 408
EP - 424
JO - IEEE Transactions on Molecular, Biological, and Multi-Scale Communications
JF - IEEE Transactions on Molecular, Biological, and Multi-Scale Communications
IS - 4
ER -