TY - JOUR
T1 - Determination of environmental flows in rivers using an integrated hydrological-hydrodynamic-habitat modelling approach
AU - Stamou, A.
AU - Polydera, A.
AU - Papadonikolaki, G.
AU - Martínez-Capel, F.
AU - Muñoz-Mas, R.
AU - Papadaki, Ch
AU - Zogaris, S.
AU - Bui, M. D.
AU - Rutschmann, P.
AU - Dimitriou, E.
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2018/3/1
Y1 - 2018/3/1
N2 - We propose the novel integrated modelling procedure 3H-EMC for the determination of the environmental flow in rivers and streams; 3H-EMC combines Hydrological, Hydrodynamic and Habitat modelling with the use of the Environmental Management Classes (EMCs) that are defined by the Global Environmental Flow Calculator. We apply 3H-EMC in the Sperchios River in Central Greece, in which water abstractions for irrigation cause significant environmental impacts. Calculations of the hydrodynamic-habitat model, in which the large and the small chub are the main fish species, suggest discharge values that range from 1.0 m3/s to 4.0 m3/s. However, hydrological modelling indicates that it is practically difficult to achieve discharges that are higher than approximately 1.0–1.5 m3/s. Furthermore, legislation suggests significantly lower values (0.4–0.5 m3/s) that are unacceptable from the ecological point of view. This behaviour shows that a non-integrated approach, which is based only on hydrodynamic-habitat modelling does not necessarily result in realistic environmental flows, and thus an integrated approach is required. We propose the value of 1.0 m3/s as the “optimum” environmental flow for Sperchios River, because (a) it satisfies the habitat requirements, as expressed by the values of weighted useable area that are equal to 2180 and 1964 m2 for the large and small chub, respectively, and correspond to 82 and 95% of their respective maximum values, (b) it is consistent with the requirements of Environmental Classes A and B, whose percentiles are higher than 75% for discharge (77.2%) and for habitat availability (>83.5% for the large chub and >85.0% for the small chub), (c) it is practically achievable from the hydrological point of view, and (d) it is higher than the value proposed by the Greek legislation. The proposed modelling approach can be applied to any river or stream using the same or similar modelling tools, which should be linked via suitable coupling algorithms.
AB - We propose the novel integrated modelling procedure 3H-EMC for the determination of the environmental flow in rivers and streams; 3H-EMC combines Hydrological, Hydrodynamic and Habitat modelling with the use of the Environmental Management Classes (EMCs) that are defined by the Global Environmental Flow Calculator. We apply 3H-EMC in the Sperchios River in Central Greece, in which water abstractions for irrigation cause significant environmental impacts. Calculations of the hydrodynamic-habitat model, in which the large and the small chub are the main fish species, suggest discharge values that range from 1.0 m3/s to 4.0 m3/s. However, hydrological modelling indicates that it is practically difficult to achieve discharges that are higher than approximately 1.0–1.5 m3/s. Furthermore, legislation suggests significantly lower values (0.4–0.5 m3/s) that are unacceptable from the ecological point of view. This behaviour shows that a non-integrated approach, which is based only on hydrodynamic-habitat modelling does not necessarily result in realistic environmental flows, and thus an integrated approach is required. We propose the value of 1.0 m3/s as the “optimum” environmental flow for Sperchios River, because (a) it satisfies the habitat requirements, as expressed by the values of weighted useable area that are equal to 2180 and 1964 m2 for the large and small chub, respectively, and correspond to 82 and 95% of their respective maximum values, (b) it is consistent with the requirements of Environmental Classes A and B, whose percentiles are higher than 75% for discharge (77.2%) and for habitat availability (>83.5% for the large chub and >85.0% for the small chub), (c) it is practically achievable from the hydrological point of view, and (d) it is higher than the value proposed by the Greek legislation. The proposed modelling approach can be applied to any river or stream using the same or similar modelling tools, which should be linked via suitable coupling algorithms.
KW - Environmental flow
KW - Environmental management classes
KW - Global environmental flow calculator
KW - Hydrodynamic-habitat modelling
KW - Hydrological modelling
KW - Integrated modelling
UR - http://www.scopus.com/inward/record.url?scp=85039995181&partnerID=8YFLogxK
U2 - 10.1016/j.jenvman.2017.12.038
DO - 10.1016/j.jenvman.2017.12.038
M3 - Article
C2 - 29306144
AN - SCOPUS:85039995181
SN - 0301-4797
VL - 209
SP - 273
EP - 285
JO - Journal of Environmental Management
JF - Journal of Environmental Management
ER -