TY - JOUR
T1 - Detection of KRAS, NRAS and BRAF by mass spectrometry - a sensitive, reliable, fast and cost-effective technique
AU - Kriegsmann, Mark
AU - Arens, Norbert
AU - Endris, Volker
AU - Weichert, Wilko
AU - Kriegsmann, Jörg
N1 - Publisher Copyright:
© 2015 Kriegsmann et al.
PY - 2015/7/30
Y1 - 2015/7/30
N2 - Background: According to current clinical guidelines mutational analysis for KRAS and NRAS is recommended prior to EGFR-directed therapy of colorectal cancer (CRC) in the metastatic setting. Therefore, reliable, fast, sensitive and cost-effective methods for routine tissue based molecular diagnostics are required that allow the assessment of the CRC mutational status in a high throughput fashion. Methods: We have developed a custom designed assay for routine mass-spectrometric (MS) (MassARRAY®, Agena Bioscience) analysis to test the presence/absence of 18 KRAS, 14 NRAS and 4 BRAF mutations. We have applied this assay to 93 samples from patients with CRC and have compared the results with Sanger sequencing and a chip hybridization assay (KRAS LCD-array Kit, Chipron). In cases with discordant results, next-generation sequencing (NGS) was performed. Results: MS detected a KRAS mutation in 46/93 (49 %), a NRAS mutation in 2/93 (2 %) and a BRAF mutation in 1/93 (1 %) of the cases. MS results were in agreement with results obtained by combination of the two other methods in 92 (99 %) of 93 cases. In 1/93 (1 %) of the cases a G12V mutation has been detected by Sanger sequencing and MS, but not by the chip assay. In this case, NGS has confirmed the G12V mutation in KRAS. Conclusions: Mutational analysis by MS is a reliable method for routine diagnostic use, which can be easily extended for testing of additional mutations.
AB - Background: According to current clinical guidelines mutational analysis for KRAS and NRAS is recommended prior to EGFR-directed therapy of colorectal cancer (CRC) in the metastatic setting. Therefore, reliable, fast, sensitive and cost-effective methods for routine tissue based molecular diagnostics are required that allow the assessment of the CRC mutational status in a high throughput fashion. Methods: We have developed a custom designed assay for routine mass-spectrometric (MS) (MassARRAY®, Agena Bioscience) analysis to test the presence/absence of 18 KRAS, 14 NRAS and 4 BRAF mutations. We have applied this assay to 93 samples from patients with CRC and have compared the results with Sanger sequencing and a chip hybridization assay (KRAS LCD-array Kit, Chipron). In cases with discordant results, next-generation sequencing (NGS) was performed. Results: MS detected a KRAS mutation in 46/93 (49 %), a NRAS mutation in 2/93 (2 %) and a BRAF mutation in 1/93 (1 %) of the cases. MS results were in agreement with results obtained by combination of the two other methods in 92 (99 %) of 93 cases. In 1/93 (1 %) of the cases a G12V mutation has been detected by Sanger sequencing and MS, but not by the chip assay. In this case, NGS has confirmed the G12V mutation in KRAS. Conclusions: Mutational analysis by MS is a reliable method for routine diagnostic use, which can be easily extended for testing of additional mutations.
UR - http://www.scopus.com/inward/record.url?scp=84937867198&partnerID=8YFLogxK
U2 - 10.1186/s13000-015-0364-3
DO - 10.1186/s13000-015-0364-3
M3 - Article
C2 - 26220423
AN - SCOPUS:84937867198
SN - 1746-1596
VL - 10
JO - Diagnostic Pathology
JF - Diagnostic Pathology
IS - 1
M1 - 132
ER -