Detection and prediction of natural hazards using large-scale environmental data

Nina Hubig, Philip Fengler, Andreas Züfle, Ruixin Yang, Stephan Günnemann

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Recent developments in remote sensing have made it possible to instrument and sense the physical world with high resolution and fidelity. Consequently, very large spatio-temporal environmental data sets, have become available to the research community. Such data consists of time-series, starting as early as 1973, monitoring up to thousands of environmental parameters, for each spatial region of a resolution as low as 0.5' × 0.5'. To make this flood of data actionable, in this work, we employ a data driven approach to detect and predict natural hazards. Our supervised learning approach learns from labeled historic events. We describe each event by a three-mode tensor, covering space, time and environmental parameters. Due to the very large number of environmental parameters, and the possibility of latent features hidden within these parameters, we employ a tensor factorization approach to learn latent factors. As the corresponding tensors can grow very large, we propose to employ an outlier-score for sparsification, thus explicitly modeling interesting (location, time, parameter) triples only. In our experimental evaluation, we apply our data-driven learning approach to the use-case of predicting the rapid-intensification of tropical storms. Learning from past tropical storms, we show that our approach is able to predict the future rapid-intesification of tropical storms with high accuracy, matching the accuracy of domain specific solutions, yet without using any domain knowledge.

Original languageEnglish
Title of host publicationAdvances in Spatial and Temporal Databases - 15th International Symposium, SSTD 2017, Proceedings
EditorsWei-Shinn Ku, Agnes Voisard, Haiquan Chen, Chang-Tien Lu, Siva Ravada, Matthias Renz, Yan Huang, Michael Gertz, Liang Tang, Chengyang Zhang, Erik Hoel, Xiaofang Zhou
PublisherSpringer Verlag
Pages300-316
Number of pages17
ISBN (Print)9783319643663
DOIs
StatePublished - 2017
Event15th International Symposium on Spatial and Temporal Databases, SSTD 2017 - Arlington, United States
Duration: 21 Aug 201723 Aug 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10411 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th International Symposium on Spatial and Temporal Databases, SSTD 2017
Country/TerritoryUnited States
CityArlington
Period21/08/1723/08/17

Fingerprint

Dive into the research topics of 'Detection and prediction of natural hazards using large-scale environmental data'. Together they form a unique fingerprint.

Cite this