Detecting structural variances of Co3O4 catalysts by controlling beam-induced sample alterations in the vacuum of a transmission electron microscope

C. Kisielowski, H. Frei, P. Specht, I. D. Sharp, J. A. Haber, S. Helveg

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

This article summarizes core aspects of beam-sample interactions in research that aims at exploiting the ability to detect single atoms at atomic resolution by mid-voltage transmission electron microscopy. Investigating the atomic structure of catalytic Co3O4 nanocrystals underscores how indispensable it is to rigorously control electron dose rates and total doses to understand native material properties on this scale. We apply in-line holography with variable dose rates to achieve this goal. Genuine object structures can be maintained if dose rates below ~100 e/Å2s are used and the contrast required for detection of single atoms is generated by capturing large image series. Threshold doses for the detection of single atoms are estimated. An increase of electron dose rates and total doses to common values for high resolution imaging of solids stimulates object excitations that restructure surfaces, interfaces, and defects and cause grain reorientation or growth. We observe a variety of previously unknown atom configurations in surface proximity of the Co3O4 spinel structure. These are hidden behind broadened diffraction patterns in reciprocal space but become visible in real space by solving the phase problem. An exposure of the Co3O4 spinel structure to water vapor or other gases induces drastic structure alterations that can be captured in this manner.

Original languageEnglish
Article number13
JournalAdvanced Structural and Chemical Imaging
Volume2
Issue number1
DOIs
StatePublished - 1 Jan 2016
Externally publishedYes

Keywords

  • Electron Dose
  • High Angle Annular Dark Field
  • High Resolution Transmission Electron Microscopy
  • High Resolution Transmission Electron Microscopy Image
  • Scanning Transmission Electron Microscopy

Fingerprint

Dive into the research topics of 'Detecting structural variances of Co3O4 catalysts by controlling beam-induced sample alterations in the vacuum of a transmission electron microscope'. Together they form a unique fingerprint.

Cite this