Detecting COVID-19 from breathing and coughing sounds using deep neural networks

Mina A. Nessiem, Mostafa M. Mohamed, Harry Coppock, Alexander Gaskell, Bjorn W. Schuller

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

32 Scopus citations

Abstract

The COVID-19 pandemic has affected the world unevenly; while industrial economies have been able to produce the tests necessary to track the spread of the virus and mostly avoided complete lockdowns, developing countries have faced issues with testing capacity. In this paper, we explore the usage of deep learning models as a ubiquitous, low-cost, pre-testing method for detecting COVID-19 from audio recordings of breathing or coughing taken with mobile devices or via the web. We adapt an ensemble of Convolutional Neural Networks that utilise raw breathing and coughing audio and spectrograms to classify if a speaker is infected with COVID-19 or not. The different models are obtained via automatic hyperparameter tuning using Bayesian Optimisation combined with HyperBand. The proposed method outperforms a traditional baseline approach by a large margin. Ultimately, it achieves an Unweighted Average Recall (UAR) of 74.9%, or an Area Under ROC Curve (AUC) of 80.7% by ensembling neural networks, considering the best test set result across breathing and coughing in a strictly subject independent manner. In isolation, breathing sounds thereby appear slightly better suited than coughing ones (76.1% vs 73.7% UAR).

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE 34th International Symposium on Computer-Based Medical Systems, CBMS 2021
EditorsJoao Rafael Almeida, Alejandro Rodriguez Gonzalez, Linlin Shen, Bridget Kane, Agma Traina, Paolo Soda, Jose Luis Oliveira
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages183-188
Number of pages6
ISBN (Electronic)9781665441216
DOIs
StatePublished - Jun 2021
Externally publishedYes
Event34th IEEE International Symposium on Computer-Based Medical Systems, CBMS 2021 - Virtual, Online
Duration: 7 Jun 20219 Jun 2021

Publication series

NameProceedings - IEEE Symposium on Computer-Based Medical Systems
Volume2021-June
ISSN (Print)1063-7125

Conference

Conference34th IEEE International Symposium on Computer-Based Medical Systems, CBMS 2021
CityVirtual, Online
Period7/06/219/06/21

Keywords

  • COVID-19
  • Convolutional Neural Networks
  • Deep Learning
  • Ensemble Models
  • Speech Analysis

Fingerprint

Dive into the research topics of 'Detecting COVID-19 from breathing and coughing sounds using deep neural networks'. Together they form a unique fingerprint.

Cite this