Design for thermo-acoustic stability: Modeling of burner and flame dynamics

Stefanie Bade, Michael Wagner, Christoph Hirsch, Thomas Sattelmayer, Bruno Schuermans

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

A Design for Thermo-Acoustic Stability (DeTAS) procedure is presented, that aims at selecting a most stable burner geometry for a given combustor. It is based on the premise that a thermo-acoustic stability model of the combustor can be formulated and that a burner design exists, which has geometric design parameters that sufficiently influence the dynamics of the flame. Describing the flame dynamics in dependence of the geometrical parameters an optimization procedure involving a linear stability model of the target combustor maximizes the damping and thereby yields the optimal geometrical parameters. To demonstrate the procedure on an existing annular combustor a generic burner design was developed that features a significant variability of dynamical flame response in dependence of two geometrical parameters. In this paper the experimentally determined complex burner acoustics and complex flame responses are described in terms of physics based parametric models with excellent agreement between experimental and model data. It is shown that these model parameters correlate uniquely with the variation of the burner geometrical parameters, allowing to interpolate the model with respect to the geometrical parameters. The interpolation is validated with experimental data.

Original languageEnglish
Title of host publicationASME Turbo Expo 2013
Subtitle of host publicationTurbine Technical Conference and Exposition, GT 2013
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791855119
DOIs
StatePublished - 2013
EventASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT 2013 - San Antonio, Tx, United States
Duration: 3 Jun 20137 Jun 2013

Publication series

NameProceedings of the ASME Turbo Expo
Volume1 B

Conference

ConferenceASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT 2013
Country/TerritoryUnited States
CitySan Antonio, Tx
Period3/06/137/06/13

Fingerprint

Dive into the research topics of 'Design for thermo-acoustic stability: Modeling of burner and flame dynamics'. Together they form a unique fingerprint.

Cite this