Design-for-testability for continuous-flow microfluidic biochips

Chunfeng Liu, Bing Li, Tsung Yi Ho, Krishnendu Chakrabarty, Ulf Schlichtmann

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Flow-based microfluidic biochips are gaining traction in the microfluidics community since they enable efficient and low-cost biochemical experiments. These highly integrated lab-on-a-chip systems, however, suffer from manufacturing defects, which cause some chips to malfunction. To test biochips after manufacturing, air pressure is applied to input ports of a chip and predetermined test vectors are used to change the states of microvalves in the chip. Pressure meters are connected to the output ports to measure pressure values, which are compared with expected values to detect errors. To reduce the cost of the test platform, the number of pressure sources and meters should be reduced. We propose a design-for-testability (DFT) technique that enables a test procedure with only a single pressure source and a single pressure meter. Furthermore, the valves inserted for DFT share control channels with valves in the original chip so that no additional control signals are required. Simulation results demonstrate that this technique can generate efficient chip architectures for single-source single-meter test in all experiment cases successfully to reduce test cost, while the performance of these chips in executing applications is still maintained.

Original languageEnglish
Title of host publicationProceedings of the 55th Annual Design Automation Conference, DAC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781450357005
DOIs
StatePublished - 24 Jun 2018
Event55th Annual Design Automation Conference, DAC 2018 - San Francisco, United States
Duration: 24 Jun 201829 Jun 2018

Publication series

NameProceedings - Design Automation Conference
VolumePart F137710
ISSN (Print)0738-100X

Conference

Conference55th Annual Design Automation Conference, DAC 2018
Country/TerritoryUnited States
CitySan Francisco
Period24/06/1829/06/18

Fingerprint

Dive into the research topics of 'Design-for-testability for continuous-flow microfluidic biochips'. Together they form a unique fingerprint.

Cite this