Abstract
We characterized strain and Ge content depending on depth in a self-assembled SiGe dot multilayer by scanning a microscopic Raman probe at a (110) cleavage plane. The multilayer structure was deposited by molecular-beam epitaxy on a (001) Si substrate and consisted of 80 periods, each of them composed by 25 nm Si spacers and 8 monolayer Ge forming laterally and vertically uncorrelated islands with a height of 2 nm and a lateral diameter of about 20 nm. An average biaxial strain of -3.5% within the core regions of islands is determined from the splitting of longitudinal and transversal optical Ge-Ge phonon modes observed in polarized Raman measurements. The absolute mode frequencies further enable analysis of a Ge content of 0.82. The analyzed strain and composition of islands are nearly independent from depths below the sample surface. This indicates well-controlled deposition parameters and negligible intermixing during deposition of subsequent layers. These Raman results are in agreement with x-ray diffraction data. Small, local Raman frequency shifts were observed and discussed with respect to partial elastic strain relaxation of the multilayer stack after cleavage, undefined Raman-scattering geometries at the sample edge, and local heating by the laser probe.
Original language | English |
---|---|
Article number | 113517 |
Journal | Journal of Applied Physics |
Volume | 98 |
Issue number | 11 |
DOIs | |
State | Published - 2005 |