Degree distribution of the FKP network model

Noam Berger, Béla Bollobás, Christian Borgs, Jennifer Chayes, Oliver Riordan

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

37 Scopus citations

Abstract

Recently, Fabrikant, Koutsoupias and Papadimitriou [7] introduced a natural and beautifully simple model of network growth involving a trade-off between geometric and network objectives, with relative strength characterized by a single parameter which scales as a power of the number of nodes. In addition to giving experimental results, they proved a power-law lower bound on part of the degree sequence, for a wide range of scalings of the parameter. Here we prove that, despite the FKP results, the overall degree distribution is very far from satisfying a power law. First, we establish that for almost all scalings of the parameter, either all but a vanishingly small fraction of the nodes have degree 1, or there is exponential decay of node degrees. In the former case, a power law can hold for only a vanishingly small fraction of the nodes. Furthermore, we show that in this case there is a large number of nodes with almost maximum degree. So a power law fails to hold even approximately at either end of the degree range. Thus the power laws found in [7] are very different from those given by other internet models or found experimentally [8].

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditorsJos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, Gerhard J. Woeginger
PublisherSpringer Verlag
Pages725-738
Number of pages14
ISBN (Print)3540404937, 9783540404934
DOIs
StatePublished - 2003
Externally publishedYes

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume2719
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Fingerprint

Dive into the research topics of 'Degree distribution of the FKP network model'. Together they form a unique fingerprint.

Cite this