TY - CHAP
T1 - Degree distribution of the FKP network model
AU - Berger, Noam
AU - Bollobás, Béla
AU - Borgs, Christian
AU - Chayes, Jennifer
AU - Riordan, Oliver
PY - 2003
Y1 - 2003
N2 - Recently, Fabrikant, Koutsoupias and Papadimitriou [7] introduced a natural and beautifully simple model of network growth involving a trade-off between geometric and network objectives, with relative strength characterized by a single parameter which scales as a power of the number of nodes. In addition to giving experimental results, they proved a power-law lower bound on part of the degree sequence, for a wide range of scalings of the parameter. Here we prove that, despite the FKP results, the overall degree distribution is very far from satisfying a power law. First, we establish that for almost all scalings of the parameter, either all but a vanishingly small fraction of the nodes have degree 1, or there is exponential decay of node degrees. In the former case, a power law can hold for only a vanishingly small fraction of the nodes. Furthermore, we show that in this case there is a large number of nodes with almost maximum degree. So a power law fails to hold even approximately at either end of the degree range. Thus the power laws found in [7] are very different from those given by other internet models or found experimentally [8].
AB - Recently, Fabrikant, Koutsoupias and Papadimitriou [7] introduced a natural and beautifully simple model of network growth involving a trade-off between geometric and network objectives, with relative strength characterized by a single parameter which scales as a power of the number of nodes. In addition to giving experimental results, they proved a power-law lower bound on part of the degree sequence, for a wide range of scalings of the parameter. Here we prove that, despite the FKP results, the overall degree distribution is very far from satisfying a power law. First, we establish that for almost all scalings of the parameter, either all but a vanishingly small fraction of the nodes have degree 1, or there is exponential decay of node degrees. In the former case, a power law can hold for only a vanishingly small fraction of the nodes. Furthermore, we show that in this case there is a large number of nodes with almost maximum degree. So a power law fails to hold even approximately at either end of the degree range. Thus the power laws found in [7] are very different from those given by other internet models or found experimentally [8].
UR - http://www.scopus.com/inward/record.url?scp=35248850625&partnerID=8YFLogxK
U2 - 10.1007/3-540-45061-0_57
DO - 10.1007/3-540-45061-0_57
M3 - Chapter
AN - SCOPUS:35248850625
SN - 3540404937
SN - 9783540404934
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 725
EP - 738
BT - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
A2 - Baeten, Jos C. M.
A2 - Lenstra, Jan Karel
A2 - Parrow, Joachim
A2 - Woeginger, Gerhard J.
PB - Springer Verlag
ER -