Deep- Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware

Vlad C. Andrei, Alexandru P. Drǎguţoiu, Gabriel Béna, Mahmoud Akl, Yin Li, Matthias Lohrmann, Ullrich J. Mönich, Holger Boche

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval (MHR). By casting the MHR problem as a sparse recovery problem, we devise the currently proposed, deep-unrolling-based Structured Learned Iterative Shrinkage and Thresholding (S-LISTA) algorithm to solve it efficiently using complex-valued convolutional neural networks with complex-valued activations, which are trained using a supervised regression objective. Afterward, a novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed. At the heart of this method lies the recently proposed Few Spikes (FS) conversion, which is extended by modifying the neuron model's parameters and internal dynamics to account for the inherent coupling between real and imaginary parts in complex-valued computations. Finally, the converted SNNs are mapped onto the SpiNNaker2 neuromorphic board, and a comparison in terms of estimation accuracy and power efficiency between the original CNNs deployed on an NVIDIA Jetson Xavier and the SNNs is being conducted. The measurement results show that the converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.

Original languageEnglish
Title of host publicationConference Record of the 58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024
EditorsMichael B. Matthews
PublisherIEEE Computer Society
Pages298-302
Number of pages5
ISBN (Electronic)9798350354058
DOIs
StatePublished - 2024
Event58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024 - Hybrid, Pacific Grove, United States
Duration: 27 Oct 202430 Oct 2024

Publication series

NameConference Record - Asilomar Conference on Signals, Systems and Computers
ISSN (Print)1058-6393

Conference

Conference58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024
Country/TerritoryUnited States
CityHybrid, Pacific Grove
Period27/10/2430/10/24

Fingerprint

Dive into the research topics of 'Deep- Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware'. Together they form a unique fingerprint.

Cite this