Deep shells: Unsupervised shape correspondence with optimal transport

Marvin Eisenberger, Aysim Toker, Laura Leal-Taixé, Daniel Cremers

Research output: Contribution to journalConference articlepeer-review

35 Scopus citations

Abstract

We propose a novel unsupervised learning approach to 3D shape correspondence that builds a multiscale matching pipeline into a deep neural network. This approach is based on smooth shells, the current state-of-the-art axiomatic correspondence method, which requires an a priori stochastic search over the space of initial poses. Our goal is to replace this costly preprocessing step by directly learning good initializations from the input surfaces. To that end, we systematically derive a fully differentiable, hierarchical matching pipeline from entropy regularized optimal transport. This allows us to combine it with a local feature extractor based on smooth, truncated spectral convolution filters. Finally, we show that the proposed unsupervised method significantly improves over the state-of-the-art on multiple datasets, even in comparison to the most recent supervised methods. Moreover, we demonstrate compelling generalization results by applying our learned filters to examples that significantly deviate from the training set.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume2020-December
StatePublished - 2020
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: 6 Dec 202012 Dec 2020

Fingerprint

Dive into the research topics of 'Deep shells: Unsupervised shape correspondence with optimal transport'. Together they form a unique fingerprint.

Cite this