Deep neural networks for energy and position reconstruction in EXO-200

S. Delaquis, M. J. Jewell, I. Ostrovskiy, M. Weber, T. Ziegler, J. Dalmasson, L. J. Kaufman, T. Richards, J. B. Albert, G. Anton, I. Badhrees, P. S. Barbeau, R. Bayerlein, D. Beck, V. Belov, M. Breidenbach, T. Brunner, G. F. Cao, W. R. Cen, C. ChambersB. Cleveland, M. Coon, A. Craycraft, W. Cree, T. Daniels, M. Danilov, S. J. Daugherty, J. Daughhetee, J. Davis, A. Der Mesrobian-Kabakian, R. Devoe, J. Dilling, A. Dolgolenko, M. J. Dolinski, W. Fairbank, J. Farine, S. Feyzbakhsh, P. Fierlinger, D. Fudenberg, R. Gornea, G. Gratta, C. Hall, E. V. Hansen, D. Harris, J. Hoessl, P. Hufschmidt, M. Hughes, A. Iverson, A. Jamil, A. Johnson, A. Karelin, T. Koffas, S. Kravitz, R. Krücken, A. Kuchenkov, K. S. Kumar, Y. Lan, D. S. Leonard, G. S. Li, S. Li, C. Licciardi, Y. H. Lin, R. Maclellan, T. Michel, B. Mong, D. Moore, K. Murray, O. Njoya, A. Odian, A. Piepke, A. Pocar, F. Retière, A. L. Robinson, P. C. Rowson, S. Schmidt, A. Schubert, D. Sinclair, A. K. Soma, V. Stekhanov, M. Tarka, J. Todd, T. Tolba, V. Veeraraghavan, J. L. Vuilleumier, M. Wagenpfeil, A. Waite, J. Watkins, L. J. Wen, U. Wichoski, G. Wrede, Q. Xia, L. Yang, Y. R. Yen, O. Ya Zeldovich

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

We apply deep neural networks (DNN) to data from the EXO-200 experiment. In the studied cases, the DNN is able to reconstruct the relevant parameters - total energy and position - directly from raw digitized waveforms, with minimal exceptions. For the first time, the developed algorithms are evaluated on real detector calibration data. The accuracy of reconstruction either reaches or exceeds what was achieved by the conventional approaches developed by EXO-200 over the course of the experiment. Most existing DNN approaches to event reconstruction and classification in particle physics are trained on Monte Carlo simulated events. Such algorithms are inherently limited by the accuracy of the simulation. We describe a unique approach that, in an experiment such as EXO-200, allows to successfully perform certain reconstruction and analysis tasks by training the network on waveforms from experimental data, either reducing or eliminating the reliance on the Monte Carlo.

Original languageEnglish
Article numberP08023
JournalJournal of Instrumentation
Volume13
Issue number8
DOIs
StatePublished - 29 Aug 2018
Externally publishedYes

Keywords

  • Analysis and statistical methods
  • Double-beta decay detectors
  • Pattern recognition, cluster finding, calibration and fitting methods
  • Time projection chambers

Fingerprint

Dive into the research topics of 'Deep neural networks for energy and position reconstruction in EXO-200'. Together they form a unique fingerprint.

Cite this