Deep Neural Network for Automatic Characterization of Lesions on 68Ga-PSMA PET/CT Images

Yu Zhao, Andrei Gafita, Giles Tetteh, Fabian Haupt, Ali Afshar-Oromieh, Bjoern Menze, Matthias Eiber, Axel Rominger, Kuangyu Shi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

The emerging PSMA-targeted radionuclide therapy provides an effective method for the treatment of advanced metastatic prostate cancer. To optimize the therapeutic effect and maximize the theranostic benefit, there is a need to identify and quantify target lesions prior to treatment. However, this is extremely challenging considering that a high number of lesions of heterogeneous size and uptake may distribute in a variety of anatomical context with different backgrounds. This study proposes an end-to-end deep neural network to characterize the prostate cancer lesions on PSMA imaging automatically. A 68Ga-PSMA-11 PET/CT image dataset including 71 patients with metastatic prostate cancer was collected from three medical centres for training and evaluating the proposed network. For proof-of-concept, we focus on the detection of bone and lymph node lesions in the pelvic area suggestive for metastases of prostate cancer. The preliminary test on pelvic area confirms the potential of deep learning methods. Increasing the amount of training data may further enhance the performance of the proposed deep learning method.

Original languageEnglish
Title of host publication2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages951-954
Number of pages4
ISBN (Electronic)9781538613115
DOIs
StatePublished - Jul 2019
Event41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany
Duration: 23 Jul 201927 Jul 2019

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Country/TerritoryGermany
CityBerlin
Period23/07/1927/07/19

Fingerprint

Dive into the research topics of 'Deep Neural Network for Automatic Characterization of Lesions on 68Ga-PSMA PET/CT Images'. Together they form a unique fingerprint.

Cite this