Deep multi-structural shape analysis: Application to neuroanatomy

Benjamín Gutiérrez-Becker, Christian Wachinger

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

We propose a deep neural network for supervised learning on neuroanatomical shapes. The network directly operates on raw point clouds without the need for mesh processing or the identification of point correspondences, as spatial transformer networks map the data to a canonical space. Instead of relying on hand-crafted shape descriptors, an optimal representation is learned in the end-to-end training stage of the network. The proposed network consists of multiple branches, so that features for multiple structures are learned simultaneously. We demonstrate the performance of our method on two applications: (i) the prediction of Alzheimer’s disease and mild cognitive impairment and (ii) the regression of the brain age. Finally, we visualize the important parts of the anatomy for the prediction by adapting the occlusion method to point clouds.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsAlejandro F. Frangi, Christos Davatzikos, Gabor Fichtinger, Carlos Alberola-López, Julia A. Schnabel
PublisherSpringer Verlag
Pages523-531
Number of pages9
ISBN (Print)9783030009304
DOIs
StatePublished - 2018
Externally publishedYes
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 16 Sep 201820 Sep 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11072 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Country/TerritorySpain
CityGranada
Period16/09/1820/09/18

Fingerprint

Dive into the research topics of 'Deep multi-structural shape analysis: Application to neuroanatomy'. Together they form a unique fingerprint.

Cite this