Deep learning of local RGB-D patches for 3D object detection and 6D pose estimation

Wadim Kehl, Fausto Milletari, Federico Tombari, Slobodan Ilic, Nassir Navab

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

203 Scopus citations

Abstract

We present a 3D object detection method that uses regressed descriptors of locally-sampled RGB-D patches for 6D vote casting. For regression, we employ a convolutional auto-encoder that has been trained on a large collection of random local patches. During testing, scene patch descriptors are matched against a database of synthetic model view patches and cast 6D object votes which are subsequently filtered to refined hypotheses. We evaluate on three datasets to show that our method generalizes well to previously unseen input data, delivers robust detection results that compete with and surpass the state-of-the-art while being scalable in the number of objects.

Original languageEnglish
Title of host publicationComputer Vision - 14th European Conference, ECCV 2016, Proceedings
EditorsBastian Leibe, Jiri Matas, Nicu Sebe, Max Welling
PublisherSpringer Verlag
Pages205-220
Number of pages16
ISBN (Print)9783319464862
DOIs
StatePublished - 2016
Event14th European Conference on Computer Vision, ECCV 2016 - Amsterdam, Netherlands
Duration: 8 Oct 201616 Oct 2016

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9907 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th European Conference on Computer Vision, ECCV 2016
Country/TerritoryNetherlands
CityAmsterdam
Period8/10/1616/10/16

Fingerprint

Dive into the research topics of 'Deep learning of local RGB-D patches for 3D object detection and 6D pose estimation'. Together they form a unique fingerprint.

Cite this