TY - GEN
T1 - Deep Learning for the Gaussian Wiretap Channel
AU - Fritschek, Rick
AU - Schaefer, Rafael F.
AU - Wunder, Gerhard
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/5
Y1 - 2019/5
N2 - End-to-end learning of communication systems with neural networks and particularly autoencoders is an emerging research direction which gained popularity in the last year. In this approach, neural networks learn to simultaneously optimize encoding and decoding functions to establish reliable message transmission. In this paper, this line of thinking is extended to communication scenarios in which an eavesdropper must further be kept ignorant about the communication. The secrecy of the transmission is achieved by utilizing a modified secure loss function based on cross-entropy which can be implemented with state-of-the-art machine-learning libraries. This secure loss function approach is applied in a Gaussian wiretap channel setup, for which it is shown that the neural network learns a trade-off between reliable communication and information secrecy by clustering learned constellations. As a result, an eavesdropper with higher noise cannot distinguish between the symbols anymore.
AB - End-to-end learning of communication systems with neural networks and particularly autoencoders is an emerging research direction which gained popularity in the last year. In this approach, neural networks learn to simultaneously optimize encoding and decoding functions to establish reliable message transmission. In this paper, this line of thinking is extended to communication scenarios in which an eavesdropper must further be kept ignorant about the communication. The secrecy of the transmission is achieved by utilizing a modified secure loss function based on cross-entropy which can be implemented with state-of-the-art machine-learning libraries. This secure loss function approach is applied in a Gaussian wiretap channel setup, for which it is shown that the neural network learns a trade-off between reliable communication and information secrecy by clustering learned constellations. As a result, an eavesdropper with higher noise cannot distinguish between the symbols anymore.
UR - http://www.scopus.com/inward/record.url?scp=85070191131&partnerID=8YFLogxK
U2 - 10.1109/ICC.2019.8761681
DO - 10.1109/ICC.2019.8761681
M3 - Conference contribution
AN - SCOPUS:85070191131
T3 - IEEE International Conference on Communications
BT - 2019 IEEE International Conference on Communications, ICC 2019 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 IEEE International Conference on Communications, ICC 2019
Y2 - 20 May 2019 through 24 May 2019
ER -