Deep learning-based parameter mapping for joint relaxation and diffusion tensor MR Fingerprinting

Carolin M. Pirkl, Pedro A. Gómez, Ilona Lipp, Guido Buonincontri, Miguel Molina-Romero, Anjany Sekuboyina, Diana Waldmannstetter, Jonathan Dannenberg, Sebastian Endt, Alberto Merola, Joseph R. Whittaker, Valentina Tomassini, Michela Tosetti, Derek K. Jones, Bjoern H. Menze, Marion I. Menzel

Research output: Contribution to journalConference articlepeer-review

12 Scopus citations

Abstract

Magnetic Resonance Fingerprinting (MRF) enables the simultaneous quantification of multiple properties of biological tissues. It relies on a pseudo-random acquisition and the matching of acquired signal evolutions to a precomputed dictionary. However, the dictionary is not scalable to higher-parametric spaces, limiting MRF to the simultaneous mapping of only a small number of parameters (proton density, T1 and T2 in general). Inspired by diffusion-weighted SSFP imaging, we present a proof-of-concept of a novel MRF sequence with embedded diffusion-encoding gradients along all three axes to efficiently encode orientational diffusion and T1 and T2 relaxation. We take advantage of a convolutional neural network (CNN) to reconstruct multiple quantitative maps from this single, highly undersampled acquisition. We bypass expensive dictionary matching by learning the implicit physical relationships between the spatiotemporal MRF data and the T1, T2 and diffusion tensor parameters. The predicted parameter maps and the derived scalar diffusion metrics agree well with state-of-the-art reference protocols. Orientational diffusion information is captured as seen from the estimated primary diffusion directions. In addition to this, the joint acquisition and reconstruction framework proves capable of preserving tissue abnormalities in multiple sclerosis lesions.

Original languageEnglish
Pages (from-to)638-654
Number of pages17
JournalProceedings of Machine Learning Research
Volume121
StatePublished - 2020
Event3rd Conference on Medical Imaging with Deep Learning, MIDL 2020 - Virtual, Online, Canada
Duration: 6 Jul 20208 Jul 2020

Keywords

  • Convolutional Neural Network
  • Diffusion Tensor
  • Image Reconstruction
  • Magnetic Resonance Fingerprinting
  • Multiple Sclerosis

Fingerprint

Dive into the research topics of 'Deep learning-based parameter mapping for joint relaxation and diffusion tensor MR Fingerprinting'. Together they form a unique fingerprint.

Cite this