Abstract
The vegetation height has been identified as a key biophysical parameter to justify the role of forests in the carbon cycle and ecosystem productivity. Therefore, consistent and large-scale forest height is essential for managing terrestrial ecosystems, mitigating climate change, and preventing biodiversity loss. Since spaceborne multispectral instruments, Light Detection and Ranging (LiDAR), and Synthetic Aperture Radar (SAR) have been widely used for large-scale earth observation for years, this paper explores the possibility of generating large-scale and high-accuracy forest heights with the synergy of the Sentinel-1, Sentinel-2, and ICESat-2 data. A Forest Height Generative Adversarial Network (FH-GAN) is developed to retrieve forest height from Sentinel-1 and Sentinel-2 images sparsely supervised by the ICESat-2 data. This model is made up of a cascade forest height and coherence generator, where the output of the forest height generator is fed into the spatial discriminator to regularize spatial details, and the coherence generator is connected to a coherence discriminator to refine the vertical details. A progressive strategy further underpins the generator to boost the accuracy of multi-source forest height estimation. Results indicated that FH-GAN achieves the best RMSE of 2.10 m at a large scale compared with the LVIS reference and the best RMSE of 6.16 m compared with the ICESat-2 reference.
Original language | English |
---|---|
Pages | 2303-2306 |
Number of pages | 4 |
DOIs | |
State | Published - 2024 |
Event | 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 - Athens, Greece Duration: 7 Jul 2024 → 12 Jul 2024 |
Conference
Conference | 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 |
---|---|
Country/Territory | Greece |
City | Athens |
Period | 7/07/24 → 12/07/24 |
Keywords
- Forest height
- ICESat-2
- Large-scale
- LVIS
- Sentinel-1
- Sentinel-2
- Spaceborne