Deep hashing for large-scale medical image retrieval

Sailesh Conjeti, Magdalini Paschali, Abhijit Guha Roy, Nassir Navab

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations


Adoption of content-based image retrieval systems (CBIR) requires efficient indexing of the data contents in order to respond to visual queries without explicitly relying on textual keywords. Searching for similar data is closely related to the fundamental problem of nearest neighbor search. Exhaustive comparison of a query across the database is infeasible in large-scale retrieval as it is computationally expensive [1].

Original languageEnglish
Title of host publicationInformatik aktuell
EditorsAndreas Maier, Thomas M. Deserno, Heinz Handels, Klaus H. Maier-Hein, Christoph Palm, Thomas Tolxdorff
PublisherSpringer Science and Business Media Deutschland GmbH
Number of pages1
ISBN (Print)9783540295945, 9783540748366, 9783540853237, 9783642246579, 9783642337062, 9783642413087, 9783662451083, 9783662557846, 9783662565360, 9783662580950
StatePublished - 2018
EventWorkshop on Bildverarbeitung fur die Medizin, 2018 - Erlangen, Germany
Duration: 11 Mar 201813 Mar 2018

Publication series

NameInformatik aktuell
ISSN (Print)1431-472X


ConferenceWorkshop on Bildverarbeitung fur die Medizin, 2018


Dive into the research topics of 'Deep hashing for large-scale medical image retrieval'. Together they form a unique fingerprint.

Cite this