Deep generative modeling of transcriptional dynamics for RNA velocity analysis in single cells

Adam Gayoso, Philipp Weiler, Mohammad Lotfollahi, Dominik Klein, Justin Hong, Aaron Streets, Fabian J. Theis, Nir Yosef

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


RNA velocity has been rapidly adopted to guide interpretation of transcriptional dynamics in snapshot single-cell data; however, current approaches for estimating RNA velocity lack effective strategies for quantifying uncertainty and determining the overall applicability to the system of interest. Here, we present veloVI (velocity variational inference), a deep generative modeling framework for estimating RNA velocity. veloVI learns a gene-specific dynamical model of RNA metabolism and provides a transcriptome-wide quantification of velocity uncertainty. We show that veloVI compares favorably to previous approaches with respect to goodness of fit, consistency across transcriptionally similar cells and stability across preprocessing pipelines for quantifying RNA abundance. Further, we demonstrate that veloVI’s posterior velocity uncertainty can be used to assess whether velocity analysis is appropriate for a given dataset. Finally, we highlight veloVI as a flexible framework for modeling transcriptional dynamics by adapting the underlying dynamical model to use time-dependent transcription rates.

Original languageEnglish
Pages (from-to)50-59
Number of pages10
JournalNature Methods
Issue number1
StatePublished - Jan 2024


Dive into the research topics of 'Deep generative modeling of transcriptional dynamics for RNA velocity analysis in single cells'. Together they form a unique fingerprint.

Cite this