Decellularized kidney matrix for perfused bone engineering

Rainer Burgkart, Alexandru Tron, Peter Prodinger, Mihaela Culmes, Jutta Tuebel, Martijn Van Griensven, Belma Saldamli, Andreas Schmitt

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

The vascularization of tissue-engineered constructs is yet an unsolved problem. Here, recent work on the decellularization of whole organs has opened new perspectives on tissue engineering. However, existing decellularization protocols last several days and derived biomatrices have only been reseeded with cells from the same tissue origin or stem cells differentiating into these types of tissue. Within the present work, we demonstrate a novel standardized, time-efficient, and reproducible protocol for the decellularization of solid tissues to derive a ready to use biomatrix within only 5h. Furthermore, we prove that biomatrices are usable as potential scaffolds for tissue engineering of vascularized tissues, even beyond tissue and maybe even species barriers. To prove this, we seeded human primary osteoblasts into a rat kidney bioscaffold. Here, seeded cells spread homogeneously within the matrix and proliferate under dynamic culture conditions. The cells do not only maintain their original phenotype within the matrix, they also show a strong metabolic activity and remodel the biomatrix toward a bone-like extracellular matrix. Thus, the decellularization technique has the ability to become a platform technology for tissue engineering. It potentially offers a universally applicable and easily producible scaffold that addresses the yet unsolved problem of vascularization.

Original languageEnglish
Pages (from-to)553-561
Number of pages9
JournalTissue Engineering - Part C: Methods
Volume20
Issue number7
DOIs
StatePublished - 1 Jul 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Decellularized kidney matrix for perfused bone engineering'. Together they form a unique fingerprint.

Cite this