DCount - A probabilistic algorithm for accurately disaggregating building occupant counts into room counts

Mikkel Baun Kjargaard, Martin Werner, Fisayo Caleb Sangogboye, Krzysztof Arendt

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Sensing accurately the number of occupants in the rooms of a building enables many important applications for smart building operation and energy management. A range of sensor technologies has been studied and applied to the problem. However, it is costly to achieve high accuracy by instrumenting all rooms in a building with dedicated occupant sensors. In this paper, we propose a new concept for estimating accurate room-level counts of occupants. The idea is to disaggregate accurate building-level counts via existing common sensors available at the room level. This solution is cost-effective as it scales to large buildings without requiring dedicated sensors in each room. We propose an algorithm named DCount that implements this concept. Our results document that DCount can provide room-level counts with a low normalized root mean squared error of 0.93. This is a major improvement compared to a state-of-the-art algorithm using common sensors and ventilation rate measurements resulting in a normalized root mean squared error of 1.54 on the same data set. Further more, we demonstrate how the results enable occupant-driven analysis of plug-load consumption which is one out of many applications using accurate room-level counts of occupants we hope to enable by proposing DCount.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE 19th International Conference on Mobile Data Management, MDM 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages46-55
Number of pages10
ISBN (Electronic)9781538641330
DOIs
StatePublished - 13 Jul 2018
Externally publishedYes
Event19th IEEE International Conference on Mobile Data Management, MDM 2018 - Aalborg, Denmark
Duration: 26 Jun 201828 Jun 2018

Publication series

NameProceedings - IEEE International Conference on Mobile Data Management
Volume2018-June
ISSN (Print)1551-6245

Conference

Conference19th IEEE International Conference on Mobile Data Management, MDM 2018
Country/TerritoryDenmark
CityAalborg
Period26/06/1828/06/18

Keywords

  • Algorithm
  • CO2
  • Disaggregation
  • Occupant Sensing
  • Stereo vision

Fingerprint

Dive into the research topics of 'DCount - A probabilistic algorithm for accurately disaggregating building occupant counts into room counts'. Together they form a unique fingerprint.

Cite this