TY - JOUR
T1 - Cyanobacterial phytochrome2 regulates the heterotrophic metabolism and has a function in the heat and high-light stress response
AU - Schwarzkopf, Manti
AU - Yoo, Yong Cheol
AU - Hückelhoven, Ralph
AU - Park, Young Mok
AU - Proels, Reinhard Korbinian
PY - 2014/4
Y1 - 2014/4
N2 - Cyanobacteria combine the photosynthetic and respiratory electron transport in one membrane system, the thylakoid membrane. This feature requires an elaborate regulation mechanism to maintain a certain redox status of the electron transport chain, hence allowing proper photosynthetic and respiratory energy metabolism. In this context, metabolic adaptations, as seen in the light-to-dark and dark-to-light transitions, are particularly challenging. However, the molecular basis of the underlying regulatory mechanisms is not well-understood. Here, we describe a function of cyanobacterial phytochrome2 (Cph2), a phytochrome of the cyanobacterial model system Synechocystis sp. PCC 6803, in regulation of the primary energy metabolism. When cells are shifted from photoautotrophic planktonic growth to light-activated heterotrophic growth and biofilm initiation, knockout of Cph2 results in impaired growth, a decrease in the activity of Glc-6-P dehydrogenase, a decrease of the transcript abundance/activity of cytochrome-c-oxidase, and slower phycocyanin degradation. Measurements of the plastoquinone reduction confirm an impaired heterotrophic metabolism in the cph2 knockout. When cells that were adapted to heterotrophic metabolism are shifted back to light conditions, the knockout of Cph2 results in an altered photosystem II chlorophyll fluorescence induction curve, which is indicative of an impaired redox balance of the electron transport chain. Moreover, Cph2 plays a role in the heat and high-light stress response, particularly under photomixotrophic conditions. Our results show a function of Cph2 in the adaptation of the primary energy metabolism to changing trophic conditions. The physiological role of Cph2 in biofilm formation is discussed.
AB - Cyanobacteria combine the photosynthetic and respiratory electron transport in one membrane system, the thylakoid membrane. This feature requires an elaborate regulation mechanism to maintain a certain redox status of the electron transport chain, hence allowing proper photosynthetic and respiratory energy metabolism. In this context, metabolic adaptations, as seen in the light-to-dark and dark-to-light transitions, are particularly challenging. However, the molecular basis of the underlying regulatory mechanisms is not well-understood. Here, we describe a function of cyanobacterial phytochrome2 (Cph2), a phytochrome of the cyanobacterial model system Synechocystis sp. PCC 6803, in regulation of the primary energy metabolism. When cells are shifted from photoautotrophic planktonic growth to light-activated heterotrophic growth and biofilm initiation, knockout of Cph2 results in impaired growth, a decrease in the activity of Glc-6-P dehydrogenase, a decrease of the transcript abundance/activity of cytochrome-c-oxidase, and slower phycocyanin degradation. Measurements of the plastoquinone reduction confirm an impaired heterotrophic metabolism in the cph2 knockout. When cells that were adapted to heterotrophic metabolism are shifted back to light conditions, the knockout of Cph2 results in an altered photosystem II chlorophyll fluorescence induction curve, which is indicative of an impaired redox balance of the electron transport chain. Moreover, Cph2 plays a role in the heat and high-light stress response, particularly under photomixotrophic conditions. Our results show a function of Cph2 in the adaptation of the primary energy metabolism to changing trophic conditions. The physiological role of Cph2 in biofilm formation is discussed.
UR - http://www.scopus.com/inward/record.url?scp=84898758692&partnerID=8YFLogxK
U2 - 10.1104/pp.113.233270
DO - 10.1104/pp.113.233270
M3 - Article
C2 - 24578507
AN - SCOPUS:84898758692
SN - 0032-0889
VL - 164
SP - 2157
EP - 2166
JO - Plant Physiology
JF - Plant Physiology
IS - 4
ER -