Cross-view geolocalization and disaster mapping with street-view and VHR satellite imagery: A case study of Hurricane IAN

Hao Li, Fabian Deuser, Wenping Yin, Xuanshu Luo, Paul Walther, Gengchen Mai, Wei Huang, Martin Werner

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Nature disasters play a key role in shaping human-urban infrastructure interactions. Effective and efficient response to natural disasters is essential for building resilience and sustainable urban environment. Two types of information are usually the most necessary and difficult to gather in disaster response. The first information is about the disaster damage perception, which shows how badly people think that urban infrastructure has been damaged. The second information is geolocation awareness, which means how people's whereabouts are made available. In this paper, we proposed a novel disaster mapping framework, namely CVDisaster, aiming at simultaneously addressing geolocalization and damage perception estimation using cross-view Street-View Imagery (SVI) and Very High-Resolution satellite imagery. CVDisaster consists of two cross-view models, where CVDisaster-Geoloc refers to a cross-view geolocalization model based on a contrastive learning objective with a Siamese ConvNeXt image encoder and CVDisaster-Est is a cross-view classification model based on a Coupled Global Context Vision Transformer (CGCViT). Taking Hurricane IAN as a case study, we evaluate the CVDisaster framework by creating a novel cross-view dataset (CVIAN) and conducting extensive experiments. As a result, we show that CVDisaster can achieve highly competitive performance (over 80% for geolocalization and 75% for damage perception estimation) with even limited fine-tuning efforts, which largely motivates future cross-view models and applications within a broader GeoAI research community. The data and code are publicly available at: https://github.com/tum-bgd/CVDisaster.

Original languageEnglish
Pages (from-to)841-854
Number of pages14
JournalISPRS Journal of Photogrammetry and Remote Sensing
Volume220
DOIs
StatePublished - Feb 2025

Keywords

  • Contrastive learning
  • Cross-view
  • Disaster response
  • GeoAI
  • Geolocalization
  • Human-urban interaction
  • Street-view imagery

Fingerprint

Dive into the research topics of 'Cross-view geolocalization and disaster mapping with street-view and VHR satellite imagery: A case study of Hurricane IAN'. Together they form a unique fingerprint.

Cite this