Cross-Task Transfer for Geotagged Audiovisual Aerial Scene Recognition

Di Hu, Xuhong Li, Lichao Mou, Pu Jin, Dong Chen, Liping Jing, Xiaoxiang Zhu, Dejing Dou

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

22 Scopus citations

Abstract

Aerial scene recognition is a fundamental task in remote sensing and has recently received increased interest. While the visual information from overhead images with powerful models and efficient algorithms yields considerable performance on scene recognition, it still suffers from the variation of ground objects, lighting conditions etc. Inspired by the multi-channel perception theory in cognition science, in this paper, for improving the performance on the aerial scene recognition, we explore a novel audiovisual aerial scene recognition task using both images and sounds as input. Based on an observation that some specific sound events are more likely to be heard at a given geographic location, we propose to exploit the knowledge from the sound events to improve the performance on the aerial scene recognition. For this purpose, we have constructed a new dataset named AuDio Visual Aerial sceNe reCognition datasEt (ADVANCE). With the help of this dataset, we evaluate three proposed approaches for transferring the sound event knowledge to the aerial scene recognition task in a multimodal learning framework, and show the benefit of exploiting the audio information for the aerial scene recognition. The source code is publicly available for reproducibility purposes. (https://github.com/DTaoo/Multimodal-Aerial-Scene-Recognition).

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
EditorsAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
PublisherSpringer Science and Business Media Deutschland GmbH
Pages68-84
Number of pages17
ISBN (Print)9783030585853
DOIs
StatePublished - 2020
Event16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: 23 Aug 202028 Aug 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12369 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom
CityGlasgow
Period23/08/2028/08/20

Keywords

  • Aerial scene classification
  • Cross-task transfer
  • Geotagged sound
  • Multimodal learning
  • Remote sensing

Fingerprint

Dive into the research topics of 'Cross-Task Transfer for Geotagged Audiovisual Aerial Scene Recognition'. Together they form a unique fingerprint.

Cite this