TY - JOUR
T1 - Coordination tending towards an anti-phase relationship determines greater sway reduction during entrainment with a simulated partner
AU - Michel, Youssef
AU - Schulleri, Katrin H.
AU - Johannsen, Leif
AU - Lee, Dongheui
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/6
Y1 - 2023/6
N2 - The increased risk of falls in the older aged population demands the development of assistive robotic devices capable of effective balance support. For the development and increased user acceptance of such devices, which provide balance support in a human-like way, it is important to understand the simultaneous occurrence of entrainment and sway reduction in human-human interaction. However, sway reduction has not been observed yet during a human touching an external, continuously moving reference, which rather increased human body sway. Therefore, we investigated in 15 healthy young adults (27.20±3.55 years, 6 females) how different simulated sway-responsive interaction partners with different coupling modes affect sway entrainment, sway reduction and relative interpersonal coordination, as well as how these human behaviours differ depending on the individual body schema accuracy. For this, participants were lightly touching a haptic device that either played back an average pre-recorded sway trajectory (“Playback”) or moved based on the sway trajectory simulated by a single-inverted pendulum model with either a positive (Attractor) or negative (Repulsor) coupling to participant's body sway. We found that body sway reduced not only during the Repulsor-interaction, but also during the Playback-interaction. These interactions also showed a relative interpersonal coordination tending more towards an anti-phase relationship, especially the Repulsor. Moreover, the Repulsor led to the strongest sway entrainment. Finally, a better body schema contributed to a reduced body sway in both the “reliable” Repulsor and the “less reliable” Attractor mode. Consequently, a relative interpersonal coordination tending more towards an anti-phase relationship and an accurate body schema are important to facilitate sway reduction.
AB - The increased risk of falls in the older aged population demands the development of assistive robotic devices capable of effective balance support. For the development and increased user acceptance of such devices, which provide balance support in a human-like way, it is important to understand the simultaneous occurrence of entrainment and sway reduction in human-human interaction. However, sway reduction has not been observed yet during a human touching an external, continuously moving reference, which rather increased human body sway. Therefore, we investigated in 15 healthy young adults (27.20±3.55 years, 6 females) how different simulated sway-responsive interaction partners with different coupling modes affect sway entrainment, sway reduction and relative interpersonal coordination, as well as how these human behaviours differ depending on the individual body schema accuracy. For this, participants were lightly touching a haptic device that either played back an average pre-recorded sway trajectory (“Playback”) or moved based on the sway trajectory simulated by a single-inverted pendulum model with either a positive (Attractor) or negative (Repulsor) coupling to participant's body sway. We found that body sway reduced not only during the Repulsor-interaction, but also during the Playback-interaction. These interactions also showed a relative interpersonal coordination tending more towards an anti-phase relationship, especially the Repulsor. Moreover, the Repulsor led to the strongest sway entrainment. Finally, a better body schema contributed to a reduced body sway in both the “reliable” Repulsor and the “less reliable” Attractor mode. Consequently, a relative interpersonal coordination tending more towards an anti-phase relationship and an accurate body schema are important to facilitate sway reduction.
KW - Coupling dynamics
KW - Entrainment
KW - Light touch
KW - Postural control
KW - Simulated interaction partners
KW - Sway reduction
UR - http://www.scopus.com/inward/record.url?scp=85154055374&partnerID=8YFLogxK
U2 - 10.1016/j.humov.2023.103090
DO - 10.1016/j.humov.2023.103090
M3 - Article
C2 - 37146446
AN - SCOPUS:85154055374
SN - 0167-9457
VL - 89
JO - Human Movement Science
JF - Human Movement Science
M1 - 103090
ER -