Abstract
This letter addresses the coordinated control of the spacecraft's attitude and the end-effector pose of a manipulator-equipped space robot. A controller is proposed to simultaneously regulate the spacecraft's attitude, the global center-of-mass, and the end-effector pose. The control is based on a triangular actuation decomposition that decouples the end-effector task from the spacecraft's force actuator, increasing fuel efficiency. The strategy is validated in hardware using a robotic motion simulator composed of a seven degrees-of-freedom (DOF) arm mounted on a six DOF base. The tradeoff between control requirements and fuel consumption is discussed.
Original language | English |
---|---|
Article number | 8642332 |
Pages (from-to) | 2108-2115 |
Number of pages | 8 |
Journal | IEEE Robotics and Automation Letters |
Volume | 4 |
Issue number | 2 |
DOIs | |
State | Published - Apr 2019 |
Keywords
- Space robotics and automation
- compliance and impedance control
- dynamics
- motion control