Control of the orbital character of indirect excitons in MoS2/WS2 heterobilayers

Jonas Kiemle, Florian Sigger, Michael Lorke, Bastian Miller, Kenji Watanabe, Takashi Taniguchi, Alexander Holleitner, Ursula Wurstbauer

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Valley selective hybridization and residual coupling of electronic states in commensurate van der Waals (vdW) heterobilayers enable the control of the orbital character of interlayer excitons. We demonstrate electric field control of layer index, orbital character, lifetime, and emission energy of indirect excitons in MoS2/WS2 heterobilayers embedded in an vdW field-effect structure. Different excitonic dipoles normal to the layers are found to stem from bound electrons and holes located in different valleys of MoS2/WS2 with a valley selective degree of hybridization. For the energetically lowest emission lines, coupling of electronic states causes a field-dependent level anticrossing that goes along with a change of the interlayer exciton lifetime from 400 to 100 ns. In the hybridized regime the exciton is delocalized between the two constituent layers, whereas for large positive or negative electric fields, the layer index of the bound hole is field dependent. Our results demonstrate the design of van der Waals solids with the possibility to in situ control their physical properties via external stimuli such as electric fields.

Original languageEnglish
Article number121404
JournalPhysical Review B
Volume101
Issue number12
DOIs
StatePublished - 15 Mar 2020

Fingerprint

Dive into the research topics of 'Control of the orbital character of indirect excitons in MoS2/WS2 heterobilayers'. Together they form a unique fingerprint.

Cite this