TY - JOUR
T1 - Control of Excited-State Proton-Coupled Electron Transfer by Ultrafast Pump-Push-Probe Spectroscopy in Heptazine-Phenol Complexes
T2 - Implications for Photochemical Water Oxidation
AU - Corp, Kathryn L.
AU - Rabe, Emily J.
AU - Huang, Xiang
AU - Ehrmaier, Johannes
AU - Kaiser, Mitchell E.
AU - Sobolewski, Andrzej L.
AU - Domcke, Wolfgang
AU - Schlenker, Cody W.
N1 - Publisher Copyright:
© 2020 American Chemical Society.
PY - 2020/4/30
Y1 - 2020/4/30
N2 - We demonstrate chemical tuning and laser-driven control of intermolecular H atom abstraction from protic solvent molecules. Using multipulse ultrafast pump-push-probe transient absorption (TA) spectroscopy, we monitor hydrogen abstraction by a functionalized heptazine (Hz) from substituted phenols in condensed-phase hydrogen-bonded complexes. Hz is the monomer unit of the ubiquitous organic polymeric photocatalyst graphitic carbon nitride (g-C3N4). Previously, we reported that the Hz derivative 2,5,8-tris(4-methoxyphenyl)-1,3,5,6,7,9,9b-heptaazaphenalene (TAHz) can photochemically abstract H atoms from water, in addition to exhibiting photocatalytic activity for H2 evolution matching that of g-C3N4 in aqueous suspensions. In the present work, we combine ultrafast multipulse TA spectroscopy with predictive wave function-based ab initio electronic-structure calculations to explore the role of mixed nπ∗/ππ∗ upper excited states in directing H atom abstraction from hydroxylic compounds. We use an ultraviolet (365 nm) laser pulse to photoexcite TAHz to a bright upper excited state, and, after a relaxation period of roughly 6 ps, we use a near-infrared (NIR) (1150 nm) pulse to "push" the chromophore from the long-lived S1 state to a higher-lying excited state. When phenol is present, the NIR push induces a persistent decrease (ΔΔOD) in the S1 TA signal magnitude, indicating an impulsively driven change in photochemical branching ratios. In the presence of substituted phenols with electron-donating moieties, the magnitude of ΔΔOD diminishes markedly due to the increased excited-state reactivity of these complexes that accompanies the cathodic shift in phenol oxidation potential. In the latter case, H atom abstraction proceeds unaided by additional energy from the push pulse. These results reveal new insight into branching mechanisms among unreactive locally excited states and reactive intermolecular charge-transfer states. They also suggest molecular design strategies for functionalizing aza-aromatics to drive important photoreactions, such as H atom abstraction from water. More generally, this study demonstrates an avidly desired achievement in the field of photochemistry, rationally redirecting excited-state reactivity with light.
AB - We demonstrate chemical tuning and laser-driven control of intermolecular H atom abstraction from protic solvent molecules. Using multipulse ultrafast pump-push-probe transient absorption (TA) spectroscopy, we monitor hydrogen abstraction by a functionalized heptazine (Hz) from substituted phenols in condensed-phase hydrogen-bonded complexes. Hz is the monomer unit of the ubiquitous organic polymeric photocatalyst graphitic carbon nitride (g-C3N4). Previously, we reported that the Hz derivative 2,5,8-tris(4-methoxyphenyl)-1,3,5,6,7,9,9b-heptaazaphenalene (TAHz) can photochemically abstract H atoms from water, in addition to exhibiting photocatalytic activity for H2 evolution matching that of g-C3N4 in aqueous suspensions. In the present work, we combine ultrafast multipulse TA spectroscopy with predictive wave function-based ab initio electronic-structure calculations to explore the role of mixed nπ∗/ππ∗ upper excited states in directing H atom abstraction from hydroxylic compounds. We use an ultraviolet (365 nm) laser pulse to photoexcite TAHz to a bright upper excited state, and, after a relaxation period of roughly 6 ps, we use a near-infrared (NIR) (1150 nm) pulse to "push" the chromophore from the long-lived S1 state to a higher-lying excited state. When phenol is present, the NIR push induces a persistent decrease (ΔΔOD) in the S1 TA signal magnitude, indicating an impulsively driven change in photochemical branching ratios. In the presence of substituted phenols with electron-donating moieties, the magnitude of ΔΔOD diminishes markedly due to the increased excited-state reactivity of these complexes that accompanies the cathodic shift in phenol oxidation potential. In the latter case, H atom abstraction proceeds unaided by additional energy from the push pulse. These results reveal new insight into branching mechanisms among unreactive locally excited states and reactive intermolecular charge-transfer states. They also suggest molecular design strategies for functionalizing aza-aromatics to drive important photoreactions, such as H atom abstraction from water. More generally, this study demonstrates an avidly desired achievement in the field of photochemistry, rationally redirecting excited-state reactivity with light.
UR - http://www.scopus.com/inward/record.url?scp=85084829401&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.0c00415
DO - 10.1021/acs.jpcc.0c00415
M3 - Article
AN - SCOPUS:85084829401
SN - 1932-7447
VL - 124
SP - 9151
EP - 9160
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 17
ER -