Continuous Risk Estimation of Acute Kidney Failure with Dense Temporal Data for ICU Patients

Kai Wu, Ee Heng Chen, Felix Wirth, Keti Vitanova, Rudiger Lange, Darius Burschka

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Acute kidney failure is a dangerous complication for ICU patients, and it is difficult to identify at early stage with conventional medical analysis. In recent years, machine learning approaches have been applied to tackle medical diagnosis tasks with great performance. In this work, we deploy machine learning models for early detection of acute kidney failure that can handle static, temporal, sparse and dense data of ICU patients. We investigate different pre-processing methods for patient data to achieve higher prediction performance and how they influence the contribution of different physiological signals in the prediction process.

Original languageEnglish
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324471
DOIs
StatePublished - 2023
Event45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia
Duration: 24 Jul 202327 Jul 2023

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Country/TerritoryAustralia
CitySydney
Period24/07/2327/07/23

Fingerprint

Dive into the research topics of 'Continuous Risk Estimation of Acute Kidney Failure with Dense Temporal Data for ICU Patients'. Together they form a unique fingerprint.

Cite this