TY - GEN
T1 - Contact model between superelements in dynamic multibody systems
AU - Virlez, Geoffrey
AU - Brüls, Olivier
AU - Sonneville, Valentin
AU - Tromme, Emmanuel
AU - Duysinx, Pierre
AU - Géradin, Michel
PY - 2013
Y1 - 2013
N2 - In this paper, a new contact formulation defined between flexible bodies modeled as superelements is investigated. Unlike rigid contact models, this approach enables to study the deformation and vibration phenomena induced by hard contacts. Compared with full-scale finite element models of flexible bodies, the proposed method is computationally more efficient, especially in case of a large number of bodies and contact conditions. The compliance of each body is described using a reduced-order elastic model which is defined in a corotational frame that follows the gross motion of the body. The basis used to reduce the initial finite element model relies on the Craig-Bampton method which uses both static boundary modes and internal vibration modes. The formulation of the contact condition couples all degrees of freedom of the reduced model in a nonlinear way. The relevance of the approach is demonstrated by simulation results first on a simple example, and then on a gear pair model.
AB - In this paper, a new contact formulation defined between flexible bodies modeled as superelements is investigated. Unlike rigid contact models, this approach enables to study the deformation and vibration phenomena induced by hard contacts. Compared with full-scale finite element models of flexible bodies, the proposed method is computationally more efficient, especially in case of a large number of bodies and contact conditions. The compliance of each body is described using a reduced-order elastic model which is defined in a corotational frame that follows the gross motion of the body. The basis used to reduce the initial finite element model relies on the Craig-Bampton method which uses both static boundary modes and internal vibration modes. The formulation of the contact condition couples all degrees of freedom of the reduced model in a nonlinear way. The relevance of the approach is demonstrated by simulation results first on a simple example, and then on a gear pair model.
UR - http://www.scopus.com/inward/record.url?scp=84896953341&partnerID=8YFLogxK
U2 - 10.1115/DETC2013-13469
DO - 10.1115/DETC2013-13469
M3 - Conference contribution
AN - SCOPUS:84896953341
SN - 9780791855966
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
PB - American Society of Mechanical Engineers
T2 - ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013
Y2 - 4 August 2013 through 7 August 2013
ER -