TY - GEN
T1 - Contact Energy Based Hindsight Experience Prioritization
AU - Sayar, Erdi
AU - Bing, Zhenshan
AU - D'Eramo, Carlo
AU - Oguz, Ozgur S.
AU - Knoll, Alois
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - Multi-goal robot manipulation tasks with sparse rewards are difficult for reinforcement learning (RL) algorithms due to the inefficiency in collecting successful experiences. Recent algorithms such as Hindsight Experience Replay (HER) expedite learning by taking advantage of failed trajectories and replacing the desired goal with one of the achieved states so that any failed trajectory can be utilized as a contribution to learning. However, HER uniformly chooses failed trajectories, without taking into account which ones might be the most valuable for learning. In this paper, we address this problem and propose a novel approach Contact Energy Based Prioritization (CEBP) to select the samples from the replay buffer based on rich information due to contact, leveraging the touch sensors in the gripper of the robot and object displacement. Our prioritization scheme favors sampling of contact-rich experiences, which are arguably the ones providing the largest amount of information. We evaluate our proposed approach on various sparse reward robotic tasks and compare it with the state-of-the-art methods. We show that our method surpasses or performs on par with those methods on robot manipulation tasks. Finally, we deploy the trained policy from our method to a real Franka robot for a pick-and-place task. We observe that the robot can solve the task successfully. The videos and code are publicly available at: https://erdiphd.github.io/HER-force/.
AB - Multi-goal robot manipulation tasks with sparse rewards are difficult for reinforcement learning (RL) algorithms due to the inefficiency in collecting successful experiences. Recent algorithms such as Hindsight Experience Replay (HER) expedite learning by taking advantage of failed trajectories and replacing the desired goal with one of the achieved states so that any failed trajectory can be utilized as a contribution to learning. However, HER uniformly chooses failed trajectories, without taking into account which ones might be the most valuable for learning. In this paper, we address this problem and propose a novel approach Contact Energy Based Prioritization (CEBP) to select the samples from the replay buffer based on rich information due to contact, leveraging the touch sensors in the gripper of the robot and object displacement. Our prioritization scheme favors sampling of contact-rich experiences, which are arguably the ones providing the largest amount of information. We evaluate our proposed approach on various sparse reward robotic tasks and compare it with the state-of-the-art methods. We show that our method surpasses or performs on par with those methods on robot manipulation tasks. Finally, we deploy the trained policy from our method to a real Franka robot for a pick-and-place task. We observe that the robot can solve the task successfully. The videos and code are publicly available at: https://erdiphd.github.io/HER-force/.
UR - http://www.scopus.com/inward/record.url?scp=85202429395&partnerID=8YFLogxK
U2 - 10.1109/ICRA57147.2024.10610910
DO - 10.1109/ICRA57147.2024.10610910
M3 - Conference contribution
AN - SCOPUS:85202429395
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 5434
EP - 5440
BT - 2024 IEEE International Conference on Robotics and Automation, ICRA 2024
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Y2 - 13 May 2024 through 17 May 2024
ER -