Constrained long-horizon direct model predictive control for power electronics

Petros Karamanakos, Tobias Geyer, Ralph Kennel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Scopus citations

Abstract

The direct model predictive control (MPC) problem for linear systems with integer inputs, such as many power electronic systems, can be formulated as an integer least-squares (ILS) optimization problem. However, solving this problem when state and/or output constraints are explicitly included is challenging. In this paper, a method that allows to effectively use the sphere decoder - even in the presence of the aforementioned constraints - is proposed. This is done by computing a new hypersphere based on the feasible control input set, as defined by the imposed state/output constraints. A variable speed drive system with a three-level voltage source inverter serves as an illustrative example to demonstrate the performance of the proposed algorithm.

Original languageEnglish
Title of host publicationECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509007370
DOIs
StatePublished - 2016
Event2016 IEEE Energy Conversion Congress and Exposition, ECCE 2016 - Milwaukee, United States
Duration: 18 Sep 201622 Sep 2016

Publication series

NameECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings

Conference

Conference2016 IEEE Energy Conversion Congress and Exposition, ECCE 2016
Country/TerritoryUnited States
CityMilwaukee
Period18/09/1622/09/16

Fingerprint

Dive into the research topics of 'Constrained long-horizon direct model predictive control for power electronics'. Together they form a unique fingerprint.

Cite this