Consistent minimization of clustering objective functions

Ulrike Von Luxburg, Sébastien Bubeck, Stefanie Jegelka, Michael Kaufmann

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Clustering is often formulated as a discrete optimization problem. The objective is to find, among all partitions of the data set, the best one according to some quality measure. However, in the statistical setting where we assume that the finite data set has been sampled from some underlying space, the goal is not to find the best partition of the given sample, but to approximate the true partition of the underlying space. We argue that the discrete optimization approach usually does not achieve this goal. As an alternative, we suggest the paradigm of "nearest neighbor clustering". Instead of selecting the best out of all partitions of the sample, it only considers partitions in some restricted function class. Using tools from statistical learning theory we prove that nearest neighbor clustering is statistically consistent. Moreover, its worst case complexity is polynomial by construction, and it can be implemented with small average case complexity using branch and bound.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference
PublisherNeural Information Processing Systems
ISBN (Print)160560352X, 9781605603520
StatePublished - 2008
Externally publishedYes
Event21st Annual Conference on Neural Information Processing Systems, NIPS 2007 - Vancouver, BC, Canada
Duration: 3 Dec 20076 Dec 2007

Publication series

NameAdvances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference

Conference

Conference21st Annual Conference on Neural Information Processing Systems, NIPS 2007
Country/TerritoryCanada
CityVancouver, BC
Period3/12/076/12/07

Fingerprint

Dive into the research topics of 'Consistent minimization of clustering objective functions'. Together they form a unique fingerprint.

Cite this