TY - GEN
T1 - Consistent minimization of clustering objective functions
AU - Von Luxburg, Ulrike
AU - Bubeck, Sébastien
AU - Jegelka, Stefanie
AU - Kaufmann, Michael
PY - 2008
Y1 - 2008
N2 - Clustering is often formulated as a discrete optimization problem. The objective is to find, among all partitions of the data set, the best one according to some quality measure. However, in the statistical setting where we assume that the finite data set has been sampled from some underlying space, the goal is not to find the best partition of the given sample, but to approximate the true partition of the underlying space. We argue that the discrete optimization approach usually does not achieve this goal. As an alternative, we suggest the paradigm of "nearest neighbor clustering". Instead of selecting the best out of all partitions of the sample, it only considers partitions in some restricted function class. Using tools from statistical learning theory we prove that nearest neighbor clustering is statistically consistent. Moreover, its worst case complexity is polynomial by construction, and it can be implemented with small average case complexity using branch and bound.
AB - Clustering is often formulated as a discrete optimization problem. The objective is to find, among all partitions of the data set, the best one according to some quality measure. However, in the statistical setting where we assume that the finite data set has been sampled from some underlying space, the goal is not to find the best partition of the given sample, but to approximate the true partition of the underlying space. We argue that the discrete optimization approach usually does not achieve this goal. As an alternative, we suggest the paradigm of "nearest neighbor clustering". Instead of selecting the best out of all partitions of the sample, it only considers partitions in some restricted function class. Using tools from statistical learning theory we prove that nearest neighbor clustering is statistically consistent. Moreover, its worst case complexity is polynomial by construction, and it can be implemented with small average case complexity using branch and bound.
UR - http://www.scopus.com/inward/record.url?scp=85162019956&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85162019956
SN - 160560352X
SN - 9781605603520
T3 - Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference
BT - Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference
PB - Neural Information Processing Systems
T2 - 21st Annual Conference on Neural Information Processing Systems, NIPS 2007
Y2 - 3 December 2007 through 6 December 2007
ER -