Confinement effects and acid strength in zeolites

Emanuele Grifoni, Giovanni Maria Piccini, Johannes A. Lercher, Vassiliki Alexandra Glezakou, Roger Rousseau, Michele Parrinello

Research output: Contribution to journalArticlepeer-review

117 Scopus citations

Abstract

Chemical reactivity and sorption in zeolites are coupled to confinement and—to a lesser extent—to the acid strength of Brønsted acid sites (BAS). In presence of water the zeolite Brønsted acid sites eventually convert into hydronium ions. The gradual transition from zeolite Brønsted acid sites to hydronium ions in zeolites of varying pore size is examined by ab initio molecular dynamics combined with enhanced sampling based on Well-Tempered Metadynamics and a recently developed set of collective variables. While at low water content (1–2 water/BAS) the acidic protons prefer to be shared between zeolites and water, higher water contents (n > 2) invariably lead to solvation of the protons within a localized water cluster adjacent to the BAS. At low water loadings the standard free energy of the formed complexes is dominated by enthalpy and is associated with the acid strength of the BAS and the space around the site. Conversely, the entropy increases linearly with the concentration of waters in the pores, favors proton solvation and is independent of the pore size/shape.

Original languageEnglish
Article number2630
JournalNature Communications
Volume12
Issue number1
DOIs
StatePublished - 1 Dec 2021

Fingerprint

Dive into the research topics of 'Confinement effects and acid strength in zeolites'. Together they form a unique fingerprint.

Cite this