Conductance Switching in Liquid Crystal-Inspired Self-Assembled Monolayer Junctions

Julian M. Dlugosch, Henning Seim, Achyut Bora, Takuya Kamiyama, Itai Lieberman, Falk May, Florian Müller-Plathe, Alexei Nefedov, Saurav Prasad, Sebastian Resch, Kai Saller, Christian Seim, Maximilian Speckbacher, Frank Voges, Marc Tornow, Peer Kirsch

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We present the prototype of a ferroelectric tunnel junction (FTJ), which is based on a self-assembled monolayer (SAM) of small, functional molecules. These molecules have a structure similar to those of liquid crystals, and they are embedded between two solid-state electrodes. The SAM, which is deposited through a short sequence of simple fabrication steps, is extremely thin (3.4 ± 0.5 nm) and highly uniform. The functionality of the FTJ is ingrained in the chemical structure of the SAM components: a conformationally flexible dipole that can be reversibly reoriented in an electrical field. Thus, the SAM acts as an electrically switchable tunnel barrier. Fabricated stacks of Al/Al2O3/SAM/Pb/Ag with such a polar SAM show pronounced hysteretic, reversible conductance switching at voltages in the range of ±2-3 V, with a conductance ratio of the low and the high resistive states of up to 100. The switching mechanism is analyzed using a combination of quantum chemical, molecular dynamics, and tunneling resistance calculation methods. In contrast to more common, inorganic material-based FTJs, our approach using SAMs of small organic molecules allows for a high degree of functional complexity and diversity to be integrated by synthetic standard methods, while keeping the actual device fabrication process robust and simple. We expect that this technology can be further developed toward a level that would then allow its application in the field of information storage and processing, in particular for in-memory and neuromorphic computing architectures.

Original languageEnglish
Pages (from-to)31044-31053
Number of pages10
JournalACS Applied Materials and Interfaces
Volume14
Issue number27
DOIs
StatePublished - 13 Jul 2022

Keywords

  • liquid crystals
  • molecular electronics
  • resistive switching
  • self-assembled monolayer
  • tunnel junction

Fingerprint

Dive into the research topics of 'Conductance Switching in Liquid Crystal-Inspired Self-Assembled Monolayer Junctions'. Together they form a unique fingerprint.

Cite this