Concurrent Ischemic Lesion Age Estimation and Segmentation of CT Brain Using a Transformer-Based Network

Adam Marcus, Paul Bentley, Daniel Rueckert

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The cornerstone of stroke care is expedient management that varies depending on the time since stroke onset. Consequently, clinical decision making is centered on accurate knowledge of timing and often requires a radiologist to interpret Computed Tomography (CT) of the brain to confirm the occurrence and age of an event. These tasks are particularly challenging due to the subtle expression of acute ischemic lesions and their dynamic nature. Automation efforts have not yet applied deep learning to estimate lesion age and treated these two tasks independently, so, have overlooked their inherent complementary relationship. To leverage this, we propose a novel end-to-end multi-task transformer-based network optimized for concurrent segmentation and age estimation of cerebral ischemic lesions. By utilizing gated positional self-attention and CT-specific data augmentation, our method can capture long-range spatial dependencies while maintaining its ability to be trained from scratch under low-data regimes commonly found in medical imaging. Further, to better combine multiple predictions, we incorporate uncertainty by utilizing quantile loss to facilitate estimating a probability density function of lesion age. The effectiveness of our model is then extensively evaluated on a clinical dataset consisting of 776 CT images from two medical centers. Experimental results demonstrate that our method obtains promising performance, with an area under the curve (AUC) of 0.933 for classifying lesion ages ≤ 4.5 h compared to 0.858 using a conventional approach, and outperforms task-specific state-of-the-art algorithms.

Original languageEnglish
Title of host publicationMachine Learning in Clinical Neuroimaging - 5th International Workshop, MLCN 2022, Held in Conjunction with MICCAI 2022, Proceedings
EditorsAhmed Abdulkadir, Deepti R. Bathula, Nicha C. Dvornek, Mohamad Habes, Seyed Mostafa Kia, Vinod Kumar, Thomas Wolfers
PublisherSpringer Science and Business Media Deutschland GmbH
Pages52-62
Number of pages11
ISBN (Print)9783031178986
DOIs
StatePublished - 2022
Event5th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2022, held in Conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duration: 18 Sep 202218 Sep 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13596 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference5th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2022, held in Conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2022
Country/TerritorySingapore
CitySingapore
Period18/09/2218/09/22

Keywords

  • Computed Tomography
  • Image segmentation
  • Lesion age estimation
  • Stroke
  • Transformer network

Fingerprint

Dive into the research topics of 'Concurrent Ischemic Lesion Age Estimation and Segmentation of CT Brain Using a Transformer-Based Network'. Together they form a unique fingerprint.

Cite this