Abstract
The potent antibiotic thiazolylpeptide GE2270 A was synthesized starting from N-tert-butyloxycarbonyl protected valine in a longest linear sequence of 20 steps and with an overall yield of 4.8 %. Key strategy was the assembly of the 2,3,6-trisubstituted pyridine core by consecutive cross-coupling reactions starting from 2,6-dibromo-3-iodopyridine. The complete Southern fragment was installed by Negishi cross-coupling of 3-zincated 2,6-dibromopyridine at the terminal 2-iodothiazole of a trithiazole (87%). The sub stituent at C-6 representing the Northern part of the molecule was introduced in form of the truncated tert-butyl 2-bromothiazole-4-carboxylate after metalation to a zinc reagent by another Negishi cross-coupling (48%). Decisive step of the whole sequence was the macrocyclization to a 29-membered macrolactam, which was conducted as an intramolecular Stille cross-coupling occurring at C-2 of the pyridine core and providing the desired product in 75% yield. The required stannane was obtained by amide bond formation (87%) between a complex dithiazole fragment representing the Eastern part of GE2270 A and a 3,6-disubstituted 2-bromopyridine. Final steps included attachment of a serine-proline amide dipeptide to the Northern part of the molecule (65%), formation of the oxazoline ring and silyl ether deprotection (55% overall).
Original language | English |
---|---|
Pages (from-to) | 2322-2339 |
Number of pages | 18 |
Journal | Chemistry - A European Journal |
Volume | 14 |
Issue number | 8 |
DOIs | |
State | Published - 7 Mar 2008 |
Keywords
- Antibiotics
- Cross-coupling
- Macrocycles
- Natural products
- Total synthesis