TY - JOUR
T1 - Conceptual design optimization of autonomous electric buses in public transportation
AU - Pathak, Aditya
AU - Scheuermann, Silvan
AU - Ongel, Aybike
AU - Lienkamp, Markus
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/3
Y1 - 2021/3
N2 - Autonomous electric buses (AEB) have widely been envisioned in future public transportation systems due to their large potential to improve service quality while reducing operational costs. The requirements and specifications for AEBs, however, remain uncertain and strongly depend on the use case. To enable the identification of the optimal vehicle specifications, this paper presents a holistic design optimization framework that explores the impacts of implementing different AEB concepts in a given set of routes/network. To develop the design optimization framework, first, a multi-objective, multi-criteria objective function is formulated by identifying the attributes of bus journeys that represent overall value to the stakeholders. Simulation models are then developed and implemented to evaluate the overall performance of the vehicle concepts. A genetic algorithm is used to find the concepts with the optimal trade-off between the overall value to the stakeholders and the total cost of ownership. A case study is presented of a single bus line in Singapore. The results show an improvement in the waiting time with the use of a smaller sized AEB with a capacity of 20 passengers. However, the costs and emissions increase due to the requirement of a larger fleet and the increase in daily distance traveled compared to a 94-passenger capacity AEB.
AB - Autonomous electric buses (AEB) have widely been envisioned in future public transportation systems due to their large potential to improve service quality while reducing operational costs. The requirements and specifications for AEBs, however, remain uncertain and strongly depend on the use case. To enable the identification of the optimal vehicle specifications, this paper presents a holistic design optimization framework that explores the impacts of implementing different AEB concepts in a given set of routes/network. To develop the design optimization framework, first, a multi-objective, multi-criteria objective function is formulated by identifying the attributes of bus journeys that represent overall value to the stakeholders. Simulation models are then developed and implemented to evaluate the overall performance of the vehicle concepts. A genetic algorithm is used to find the concepts with the optimal trade-off between the overall value to the stakeholders and the total cost of ownership. A case study is presented of a single bus line in Singapore. The results show an improvement in the waiting time with the use of a smaller sized AEB with a capacity of 20 passengers. However, the costs and emissions increase due to the requirement of a larger fleet and the increase in daily distance traveled compared to a 94-passenger capacity AEB.
KW - Autonomous buses
KW - Electric buses
KW - Public transportation
KW - Vehicle concept optimization
UR - http://www.scopus.com/inward/record.url?scp=85102359652&partnerID=8YFLogxK
U2 - 10.3390/wevj12010030
DO - 10.3390/wevj12010030
M3 - Article
AN - SCOPUS:85102359652
SN - 2032-6653
VL - 12
SP - 1
EP - 18
JO - World Electric Vehicle Journal
JF - World Electric Vehicle Journal
IS - 1
M1 - 30
ER -