TY - GEN
T1 - CoMUX
T2 - 41st IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2022
AU - Liang, Siyuan
AU - Li, Mengchu
AU - Tseng, Tsun Ming
AU - Schlichtmann, Ulf
AU - Ho, Tsung Yi
N1 - Publisher Copyright:
© 2022 Association for Computing Machinery.
PY - 2022/10/30
Y1 - 2022/10/30
N2 - Flow-based microfluidic chips are one of the most promising platforms for biochemical experiments. Transportation channels and operation devices inside these chips are controlled by microvalves, which are driven by external pressure sources. As the complexity of experiments on these chips keeps increasing, control multiplexers (MUXes) become necessary for the actuation of the enormous number of valves. However, current binary-coding-based MUXes do not take full advantage of the coding capacity and suffer from the reliability problem caused by the high control channel density. In this work, we propose a novel MUX coding strategy, named Combinatorial Coding, along with an algorithm to synthesize combinatorialcoding- based MUXes (CoMUXes) of arbitrary sizes with the proven maximum coding capacity. Moreover, we develop a simplification method to reduce the number of valves and control channels in CoMUXes and thus improve their reliability. We compare CoMUX with the state-of-the-art MUXes under different control demands with up to 10 × 213 independent control channels. Experiments show that CoMUXes can reliably control more independent control channels with fewer resources. For example, when the number of the to-be-controlled control channels is up to 10 × 213, compared to a state-of-the-art MUX, the optimized CoMUX reduces the number of required flow channels by 44% and the number of valves by 90%.
AB - Flow-based microfluidic chips are one of the most promising platforms for biochemical experiments. Transportation channels and operation devices inside these chips are controlled by microvalves, which are driven by external pressure sources. As the complexity of experiments on these chips keeps increasing, control multiplexers (MUXes) become necessary for the actuation of the enormous number of valves. However, current binary-coding-based MUXes do not take full advantage of the coding capacity and suffer from the reliability problem caused by the high control channel density. In this work, we propose a novel MUX coding strategy, named Combinatorial Coding, along with an algorithm to synthesize combinatorialcoding- based MUXes (CoMUXes) of arbitrary sizes with the proven maximum coding capacity. Moreover, we develop a simplification method to reduce the number of valves and control channels in CoMUXes and thus improve their reliability. We compare CoMUX with the state-of-the-art MUXes under different control demands with up to 10 × 213 independent control channels. Experiments show that CoMUXes can reliably control more independent control channels with fewer resources. For example, when the number of the to-be-controlled control channels is up to 10 × 213, compared to a state-of-the-art MUX, the optimized CoMUX reduces the number of required flow channels by 44% and the number of valves by 90%.
UR - http://www.scopus.com/inward/record.url?scp=85145657329&partnerID=8YFLogxK
U2 - 10.1145/3508352.3549353
DO - 10.1145/3508352.3549353
M3 - Conference contribution
AN - SCOPUS:85145657329
T3 - IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
BT - Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2022
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 30 October 2022 through 4 November 2022
ER -