Computing CNN loss and gradients for pose estimation with Riemannian geometry

Benjamin Hou, Nina Miolane, Bishesh Khanal, Matthew C.H. Lee, Amir Alansary, Steven McDonagh, Jo V. Hajnal, Daniel Rueckert, Ben Glocker, Bernhard Kainz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

Pose estimation, i.e. predicting a 3D rigid transformation with respect to a fixed co-ordinate frame in, SE(3), is an omnipresent problem in medical image analysis. Deep learning methods often parameterise poses with a representation that separates rotation and translation. As commonly available frameworks do not provide means to calculate loss on a manifold, regression is usually performed using the L2-norm independently on the rotation’s and the translation’s parameterisations. This is a metric for linear spaces that does not take into account the Lie group structure of SE(3). In this paper, we propose a general Riemannian formulation of the pose estimation problem, and train CNNs directly on SE(3) equipped with a left-invariant Riemannian metric. The loss between the ground truth and predicted pose (elements of the manifold) is calculated as the Riemannian geodesic distance, which couples together the translation and rotation components. Network weights are updated by back-propagating the gradient with respect to the predicted pose on the tangent space of the manifold SE(3). We thoroughly evaluate the effectiveness of our loss function by comparing its performance with popular and most commonly used existing methods, on tasks such as image-based localisation and intensity-based 2D/3D registration. We also show that hyper-parameters, used in our loss function to weight the contribution between rotations and translations, can be intrinsically calculated from the dataset to achieve greater performance margins.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsJulia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, Gabor Fichtinger, Alejandro F. Frangi
PublisherSpringer Verlag
Pages756-764
Number of pages9
ISBN (Print)9783030009274
DOIs
StatePublished - 2018
Externally publishedYes
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 16 Sep 201820 Sep 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11070 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Country/TerritorySpain
CityGranada
Period16/09/1820/09/18

Fingerprint

Dive into the research topics of 'Computing CNN loss and gradients for pose estimation with Riemannian geometry'. Together they form a unique fingerprint.

Cite this