Compiling SU(4) quantum circuits to IBM QX architectures

Alwin Zulehner, Robert Wille

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

87 Scopus citations

Abstract

The Noisy Intermediate-Scale Quantum (NISQ) technology is currently investigated by major players in the field to build the first practically useful quantum computer. IBM QX architectures are the first ones which are already publicly available today. However, in order to use them, the respective quantum circuits have to be compiled for the respectively used target architecture. While first approaches have been proposed for this purpose, they are infeasible for a certain set of SU(4) quantum circuits which have recently been introduced to benchmark corresponding compilers. In this work, we analyze the bottlenecks of existing compilers and provide a dedicated method for compiling this kind of circuits to IBM QX architectures. Our experimental evaluation (using tools provided by IBM) shows that the proposed approach significantly outperforms IBM's own solution regarding fidelity of the compiled circuit as well as runtime. Moreover, the solution proposed in this work has been declared winner of the IBM QISKit Developer Challenge. An implementation of the proposed methodology is publicly available at http://iic.jku.at/eda/research/ibm_qx_mapping.

Original languageEnglish
Title of host publicationASP-DAC 2019 - 24th Asia and South Pacific Design Automation Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages185-190
Number of pages6
ISBN (Electronic)9781450360074
DOIs
StatePublished - 21 Jan 2019
Externally publishedYes
Event24th Asia and South Pacific Design Automation Conference, ASPDAC 2019 - Tokyo, Japan
Duration: 21 Jan 201924 Jan 2019

Publication series

NameProceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC

Conference

Conference24th Asia and South Pacific Design Automation Conference, ASPDAC 2019
Country/TerritoryJapan
CityTokyo
Period21/01/1924/01/19

Fingerprint

Dive into the research topics of 'Compiling SU(4) quantum circuits to IBM QX architectures'. Together they form a unique fingerprint.

Cite this