COMPARISON OF THE FLAME DYNAMICS OF A LIQUID FUELED SWIRL STABILIZED COMBUSTOR FOR DIFFERENT DEGREES OF FUEL-AIR PREMIXING

Jan Kaufmann, Manuel Vogel, Thomas Sattelmayer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This study investigates the flame dynamics of lean premixed kerosene combustion for two different degrees of fuel-air premixing using a swirl stabilized burner with an axially movable twin fluid fuel injection nozzle. Thermal power, equivalence ratio and atomizing air mass flow are varied systematically for both nozzle positions investigated. Measurements of the droplet size distribution at the nozzle exit are provided for all operation points. NOx emission measurements and OH*-chemiluminescence flame images show that stationary combustion characteristics significantly change with the nozzle position. Flame Transfer Functions (FTFs) are presented and interpreted for all operation points. The FTFs for the two configurations differ most in the low frequency range where the influence of the droplet dynamics is expected to be highest. For both configurations, a change in thermal power does not affect droplet size, flame shape, NOx emissions and FTF. The observed trends in response to changes in equivalence ratio and atomizing air mass flow are opposite for both configurations. NOx emissions and flame shape are independent of the atomization air mass flow in the highly premixed configuration but not in the partially premixed configuration. In contrast to this, the FTF is affected by changes of the atomization air mass flow in both configurations, but again the trends are opposite. The observed trends for the highly premixed configuration are modeled and reproduced by a change in the phase relation between the equivalence ratio fluctuations and other instability driving mechanisms.

Original languageEnglish
Title of host publicationCombustion, Fuels, and Emissions
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791886953
DOIs
StatePublished - 2023
EventASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023 - Boston, United States
Duration: 26 Jun 202330 Jun 2023

Publication series

NameProceedings of the ASME Turbo Expo
Volume3A-2023

Conference

ConferenceASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023
Country/TerritoryUnited States
CityBoston
Period26/06/2330/06/23

Keywords

  • atomization
  • combustion instabilitiy
  • combustion thermoacoustics
  • flame dynamics
  • flame transfer function
  • liquid fuel combustion
  • sprays

Fingerprint

Dive into the research topics of 'COMPARISON OF THE FLAME DYNAMICS OF A LIQUID FUELED SWIRL STABILIZED COMBUSTOR FOR DIFFERENT DEGREES OF FUEL-AIR PREMIXING'. Together they form a unique fingerprint.

Cite this