TY - GEN
T1 - Comparison between x-ray tube-based and synchrotron radiation-based μcT
AU - Brunke, Oliver
AU - Brockdorf, Kathleen
AU - Drews, Susanne
AU - Müller, Bert
AU - Donath, Tilman
AU - Herzen, Julia
AU - Beckmann, Felix
PY - 2008
Y1 - 2008
N2 - Nowadays, X-ray tube-based high-resolution CT systems are widely used in scientific research and industrial applications. But the potential, convenience and economy of these lab systems is often underestimated. The present paper shows the comparison of sophisticated conventional μCT with synchrotron radiation-based μCT (SRμCT). The different aspects and characteristics of both approaches like spatial and density resolution, penetration depth, scanning time or sample size is described in detail. The tube-based μCT measurements were performed with a granite-based nanotom®-CT system (phoenix/x-ray, Wunstorf, Germany) equipped with a 180 kV - 15 W high-power nanofocus® tube with tungsten or molybdenum targets. The tube offers a wide range of applications from scanning low absorbing samples in nanofocus® mode with voxel sizes below 500 nm and highly absorbing objects in the high power mode with focal spot and voxel sizes of a few microns. The SRμCT measurements were carried out with the absorption contrast set-up at the beamlines W 2 and BW 2 at HASYLAB/DESY, operated by the GKSS Research Center. The range of samples examined covers materials of very different absorption levels and related photon energies for the CT scans. Both quantitative and qualitative comparisons of CT scans using biomedical specimens with rather low X-ray absorption such as parts of the human spine as well as using composites from the field of materials science are shown.
AB - Nowadays, X-ray tube-based high-resolution CT systems are widely used in scientific research and industrial applications. But the potential, convenience and economy of these lab systems is often underestimated. The present paper shows the comparison of sophisticated conventional μCT with synchrotron radiation-based μCT (SRμCT). The different aspects and characteristics of both approaches like spatial and density resolution, penetration depth, scanning time or sample size is described in detail. The tube-based μCT measurements were performed with a granite-based nanotom®-CT system (phoenix/x-ray, Wunstorf, Germany) equipped with a 180 kV - 15 W high-power nanofocus® tube with tungsten or molybdenum targets. The tube offers a wide range of applications from scanning low absorbing samples in nanofocus® mode with voxel sizes below 500 nm and highly absorbing objects in the high power mode with focal spot and voxel sizes of a few microns. The SRμCT measurements were carried out with the absorption contrast set-up at the beamlines W 2 and BW 2 at HASYLAB/DESY, operated by the GKSS Research Center. The range of samples examined covers materials of very different absorption levels and related photon energies for the CT scans. Both quantitative and qualitative comparisons of CT scans using biomedical specimens with rather low X-ray absorption such as parts of the human spine as well as using composites from the field of materials science are shown.
KW - Bone architecture
KW - Comparison
KW - Composite microstructure
KW - Nanofocus X-ray tube
KW - Synchrotron radiation-based CT
KW - X-ray tube CT system
UR - http://www.scopus.com/inward/record.url?scp=56249146005&partnerID=8YFLogxK
U2 - 10.1117/12.794789
DO - 10.1117/12.794789
M3 - Conference contribution
AN - SCOPUS:56249146005
SN - 9780819472984
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Developments in X-Ray Tomography VI
T2 - Developments in X-Ray Tomography VI
Y2 - 12 August 2008 through 14 August 2008
ER -